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Abstract—TCP/IP is the predominant communication protocol
in modern networks but also one of the most demanding.
Consequently, TCP/IP offload is becoming increasingly popular
with standard network interface cards. TCP/IP Offload Engines
have also emerged for FPGAs, and are being offered by vendors
such as Intilop, Fraunhofer HHI, PLDA and Dini Group. With
the target application being high-frequency trading, these imple-
mentations focus on low latency and support a limited session
count. However, many more applications beyond high-frequency
trading can potentially be accelerated inside an FPGA once TCP
with high session count is available inside the fabric. This way,
a network-attached FPGA on ingress and egress to a CPU can
accelerate functions such as encryption, compression, memcached
and many others in addition to running the complete network
stack.
This paper introduces a novel architecture for a 10 Gbps line-
rate TCP/IP stack for FPGAs that can scale with the num-
ber of sessions and thereby addresses these new applications.
We prototyped the design on a VC709 development board,
demonstrating compatibility with existing network infrastructure,
operating at full 10 Gbps throughput full-duplex while supporting
10,000 sessions. Finally, the design has been described primarily
using high-level synthesis, which accelerates development time
and improves maintainability.

I. INTRODUCTION

TCP/IP is the cornerstone of modern network communi-
cations with its support for reliable data transfer including
flow control, congestion avoidance, duplicate data suppression
and in-order delivery. However, this is associated with sub-
stantial complexity. Foong [1] stipulates that 1 Hertz of CPU
processing is required to send or receive 1 bps of TCP/IP
which equates to 8 cores clocked at 1.25 GHz for 10 Gbps
line-rate processing. The reasons for this are manyfold and
well understood. First of all, as TCP is connection-oriented,
the implemented network stack needs to keep state for every
connection, something which naturally becomes more complex
with the number of open sessions. Secondly, to ensure reliable
data transfer, data has to be buffered until an acknowledgment
has been received. Additionally, segmentation and reassembly
are needed together with out-of-order processing to packetize
incoming and outgoing data streams from the application
layer. Finally, TCP is interrupt-intensive in nature as, for
example, every time a packet is received or a transmission
time-out occurs an interrupt is triggered. Together with its large
footprint, which exceeds the capacity of standard instruction
caches and therefore causes a high miss rate, this leads to poor
branch-predictability on standard x86 execution and disrupts

co-executing applications [2].
As a result, TCP/IP offload is increasingly integrated into
network interface cards with many of the major vendors, such
as Broadcom, Emulex, and Chelsio offering full offload since
2011 [3]. TCP/IP Offload Engines (TOEs) have also emerged
for FPGAs offered by vendors such as Intilop, Fraunhofer
HHI, PLDA and Dini Group [4], [5], [6], [7]. However, these
implementations target high-frequency trading which is driven
by latency requirements [8]. To minimize latency, these stacks
constraint session support as we explain further in section II.
Our design aims to expand the applicability of FPGAs by
creating a flexible architecture that, in addition to delivering
full line-rate throughput, can also scale to high session counts,
an essential prerequisite to deployment in networked servers in
data centers. Beyond alleviating the TCP/IP bottleneck on the
host CPU, the solution aims to accelerate applications such
as encryption, compression, memcached [9] or higher-level
protocol processing such as JMS [10] by pushing the TCP
termination completely inside the FPGA. This enables accel-
eration through reconfigurable logic for potentially thousands
of sessions.
To maximize the stack’s applicability, it was essential to create
a flexible solution that allows to efficiently and easily adapt the
design to different congestion avoidance schemes, potentially
out-of-order processing, etc., while using a minimal resource
footprint. To achieve this, we adopted a C++-based design flow
using high-level synthesis (HLS) that simplifies the design,
makes it more flexible and easier to customize towards specific
requirements. As an added bonus, the HLS-based design is
automatically portable to any device supported by the tool and
significantly increases productivity.
In more detail, the key contributions of this paper are as
follows:

- Sustained 10 Gbps bandwidth TCP/IP stack through data-
flow architecture

- Support for 10,000 concurrent connections with external data
buffers, hash-based session lookup, and linear scalability

- Design flexibility through C/C++ design using Vivado HLS
- Control flow features and out-of-order segment processing
- Performance evaluation in a real world setup

This paper is structured as follows: We present related work
in section II. The overall system architecture is introduced in
section III, while the TOE is discussed in detail in section IV.
We evaluate the system in section V. Section VI concludes the
paper.
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II. RELATED WORK

There have been both commercial and academic TCP/IP
implementations on configurable logic in the past. On the
academic front, Dollas et al. [11] presented an open TCP/IP
architecture in 2005 with limited throughput (estimated at
350 Mbps) and limited connection support (31 active and 16
passive). Buffers are shared between all protocols and connec-
tions which limits parallelism. [12] and [13] presented TOEs
using a combined hardware-software solution. A PowerPC
CPU handles most of the TCP processing, while checksum val-
idation and computation, Address Resolution Protocol (ARP),
Internet Control Message Protocol (ICMP) and IP packets are
processed by the FPGA. A complete TOE for FPGAs without
processor assist was presented in [14]. With the target applica-
tion being embedded devices, resource usage was paramount
and feature set limited. Most recently, [15] presented a TOE
with a centralized scheduler, which is estimated to sustain
4 Gbps for receiving and 40 Gbps for transmitting data for
maximum segment sizes of 1460 bytes, targeting asymmetric
workloads with large size packets such as video on demand. In
contrast, our data-flow based approach supports 10 Gbps full-
duplex even with worst case minimum-size packets of 64 B,
thereby enabling much higher packet rates. Furthermore, we
support a more complex and deeper packet buffering system
which offers 64 KB per session as opposed to the single
buffer used for all connections in [15]. This provides more
flexibility and less tighter coupling to the application. Out-
of-order (OOO) processing is equally supported with minor
differences on the data structures; We store only offset and
length for OOO blocks instead of all SEQ numbers explicitly
and write the OOO blocks directly to their position within the
receive buffer instead of sorting through received segments
when access is required. Some other work has focused on
parts of a TCP/IP stack. [16] presented an ARP module.
[17] showed a User Datagram Protocol (UDP) stack targeting
1 Gbps. Finally [18] uses a basic low performance TCP/IP
stack to configure and test a circuit running on the FGPA.
In regards to commercial systems, multiple TCP/IP stacks for
FPGAs are available from vendors such as Intilop, Fraunhofer
HHI, Dini Group and PLDA [4], [5], [6], [7]. Up until 2014, all
of the available TOEs were ultra-low latency and low session
count, typically well below 256 concurrent sessions, with the
key driving application being high-frequency trading (HFT).
To minimize latency, these stacks are typically constrained
in session support as high session counts directly impact
latency two-fold. Firstly, for every session, packets need to be
buffered for both packet reception and transmission. Assuming
a typical TCP window size of 64 KB and given that standard
FPGAs are typically limited to hundreds of Mb in on-chip
memory (for example 132.9 Mb for the current 20 nm Xilinx
generation [19]), packet buffering for anything more than a
few hundred sessions needs to be moved off-chip into external
DRAM. This has an adverse effect on latency (we have
measured the overhead of external packet buffering to be over
600 ns and increasing with segment size, see section V-B).
Secondly, to associate an incoming or outgoing packet with a
session, one needs to perform a lookup using the four-tuple
of source and destination IP address, source and destination
TCP port. Lookup problems can be concluded within 1 clock
cycle when ternary content addressable memory (TCAM) style
architectures are deployed. In essence, one stores every entry of
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Fig. 1. Block diagram of the implemented TCP/IP stack

the session table inside the chip together with a comparator to
the incoming four-tuple that enables a comparison of all entries
within a single cycle. However, these architectures become
prohibitively resource expensive for high session counts.
Since the beginning of the year 2014, Intilop has announced
a high session count variant with support for up to 16,000
sessions which is probably the closest related available TCP/IP
stack in terms of feature set. A detailed architectural compari-
son is at this stage not possible, as Intilop has not disclosed the
design. However, our implementation is written in C++ which
increases design flexibility, maintainability and portability.

III. SYSTEM ARCHITECTURE

Implementing TCP/IP involves the implementation of a
stack of protocols such as ARP, ICMP, IP, UDP, TCP and
Dynamic Host Configuration Protocol (DHCP) whereby each
protocol handles a different aspect of the communication. This
is reflected in Fig. 1 which illustrates the system architecture of
our stack within the dashed lines. At the lowest layer, the stack
interfaces with the Ethernet Network Interface which includes
both the Media Access Control (MAC) and the physical layer
which handle layer 1 and 2 functionality of the network stack
both of which are standard Xilinx IP cores. Incoming packets
are parsed by the IP Input Handler which also validates IP
checksum, determines if they match any of the supported pro-
tocols, and forwards the packets to the corresponding modules
accordingly. Invalid packets are discarded and unsupported
protocols are forwarded to a separate interface.
The ARP module handles address resolution and replies and
generates ARP requests when needed. For this, it contains a
lookup table that maps IP addresses to their corresponding
MAC addresses. The ARP table is implemented in on-chip
block memory (BRAM). ICMP enables the exchange of con-
trol related messages between two hosts and is processed in the
ICMP module. Our implementation supports the most popular
subset, namely “echo” or “ping” messages, “destination un-
reachable” messages, which are created upon packet reception
for a closed port, and “TTL expired” messages, which are
returned when datagrams with an expired time-to-live (TTL)
field are observed. The UDP module handles the processing
of the corresponding protocol, which is a stateless light-weight
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protocol that allows for quick and easy data exchange between
two end-points. The majority of the design complexity resides
with the TCP module and forms the key part of our work.
We describe its architecture in detail in section IV. Both the
UDP and the TCP module interface to the IP Output Handler
which merges all the data streams back into a single stream,
computes the IP checksum, issues a lookup to the ARP table,
formats headers and passes them onto the Ethernet Network
Interface for transmission. Finally, our stack also includes a
minimal DHCP client which allows for dynamic configuration
of the device’s IP address over the network.

IV. TCP ARCHITECTURE

The TCP Offload Engine is the key component of this
work. In this section we will discuss its architecture, processing
algorithms, and its key characteristics.

A. Architecture

As shown in Fig. 2, a fundamental aspect of the design
is that it is divided into two parallel paths, one for incoming
packets (RX), and one for outgoing packets (TX). Both paths
consist of a protocol engine (RX and TX Engine), a packet
buffer (RX and TX Buffer) and an application interface (RX
and TX App If ). The two paths are implemented as data-flow
architectures and store and share connection state information
through the central data structures located at the heart of the
architecture. Separating the two data-flow pipelines from the
state-storing data structures, as well as the careful partitioning
of data structures itself, is essential to achieving line-rate
bidirectional throughput. The protocol engines handle all pro-
tocol processing, the packet buffers store the packets between
the engines and the application interfaces which provide and
receive data to and from the user application. The following
paragraphs elaborate on the data structures, packet buffering
mechanics, as well as the two protocol engines.

1) Session lookup, port and state table, timers and event en-
gine: The Session lookup module maps the four-tuple (source
and destination IP addresses and TCP ports) to a so-called
session ID which represents a connection and is used as an

index for all other data structures. At the heart of the lookup
problem is a scalable TCAM implementation which is based
on a hash table and presented in [20]. In comparison to a
traditional TCAM, it uses less resources and scales linearly
in its resource requirements with the number of entries. The
Port Table keeps track of the state of each port which can
be closed, listen or active. According to the standard, we
support two port ranges, one for static ports (0 to 32,767),
which we use for listening ports, and one for dynamically-
assigned or ephemeral ports (32,768 to 65,535), which are
used for active connections. For every incoming packet the
RX Engine queries the Port Table to check if the destination
port is either in the listen or active state. If this is not the
case, then the packet is immediately discarded. Similarly, the
application interfaces are accessing the Port Table to listen on
a port or get a new ephemeral port. The State Table stores the
current state of each connection. The state values represent
the states as specified by RFC793 [21], i.e. CLOSED, SYN-
SENT, SYN-RECEIVED, etc. State values can be updated
from the RX Engine but also from the TX App If when a
new connection is opened. To guarantee consistency of the
state entries, we support atomic read-modify-write operations
(RMW). The locking is fine-grained so that only the currently
accessed entry is locked. The Timers module supports all time-
based event triggering as required by the protocol with the
following kinds: The “Retransmission Timer” keeps track of
the retransmission intervals for packets which have been sent
but not acknowledged by the remote host. The “Probe Timer”
is set in case data is available but cannot be sent immediately
and transmission has to be postponed. Finally, the “Time-
Wait Timer” handles the long time-out in the TIME-WAIT
state before the connection reaches the CLOSED state. We
adopt a highly efficient architectural approach as introduced
by [22] where each timer is represented by a single table
with one entry per connection with one timer per connection
for retransmission, as explained in RFC6298 [23], rather than
for every segment. This provides linear scaling of embedded
memory (BRAM) resources with number of open connections.
In more detail, to start the timer, the entry of this connection
is set to the value of the time-interval. Every nth cycle, where
n is the maximum number of connections, the entry of each
connection with an active time-interval is decremented until
zero is reached and the appropriate event is triggered. This
serial probing of all connection timers is a viable approach,
as TCP timers operate with a millisecond granularity. Given a
clock period of 6.4 ns and one timer access per clock cycle,
we can update 156,250 connections per millisecond. Generated
events are routed through the Event Engine, together with
events from the RX Engine and the TX App If, to the TX Engine.
The aggregated event stream is then merged with outstanding
acknowledgments [24].

2) TCP buffer and window management: TCP operation re-
quires the buffering of payloads to facilitate retransmission and
flow control for both receive and transmit. Our implementation
allocates two fixed-sized buffers of 64 KB per connection.
This means that for a design supporting 10,000 connections,
a total of 1.3 GB of external memory is necessary. Since this
amount of memory space is not available on-chip, external
DDR3 memory is used. The buffers are implemented as
circular buffers, each in a pre-allocated region of the memory.
Managing each of the buffers requires a set of pointers to
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keep track of various, relevant locations in the segment stream.
These pointers are stored in the TX and RX SAR Tables, which
are instrumental for handling all segmentation and reassembly
(SAR) functionality as well as maintaining the TCP windows.
Fig. 3 illustrates the two packet buffers. For RX, the buffer
space is divided as follows: data that was received (and
acknowledged) but not read by the application, available free
space to receive new segments, and a non-contiguous number
of blocks of OOO received data (as described in section
IV-C3). On the transmission side, we need to keep track of
three partitions: transmitted but not yet acknowledged data,
data written by the application to the buffer but not yet sent,
and finally free space. In addition to these three pointers, the
TX SAR also stores the Send Window which is advertised by
the other device and represents the size of its receive buffer.
The Usable Window, as shown in the figure, can be computed
on the fly and is not explicitly stored in the table. Both tables
hold one entry per connection and scale therefore linearly with
the maximum number of connections.

3) RX and TX Engine: The RX Engine is responsible for
the protocol processing on incoming packets and performs a
series of checks and data structure updates before writing the
segment payload into the RX buffer. This includes the follow-
ing functions1: The RX Engine computes the TCP checksum
and verifies its correctness. It extracts meta-information (SEQ
number, ACK number, length, IP addresses and TCP ports,
window size, TCP flags) and checks if the destination port is
accessible. The RX Engine also issues the session ID lookup
of the connection and queries the current state of the arrived
segment’s TCP connection from the State and SAR Tables.
The updated state is computed and written back while timers
are set and events triggered as needed as (for example for
the transmission of acknowledgment packets). If the packet
contains a payload that is within the required receive window,
then it is written to the RX Buffer and the application is
notified. If the received data is valid but out of order, then the
data is written to the RX Buffer and processed as described in
section IV-C3.
The TX Engine is responsible for transmitting TCP segments
which can stem either from the user application providing new
data for transmission, or from the multitude of events such as
a simple retransmission event or an open session request from

1TCP options are currently not supported and are ignored.

the application, which triggers the sending of a SYN segment.
These events can be set off by the RX Engine, any of the Timers
or the TX App If. The main component in the TX Engine is a
state machine triggered by the Event Engine. In contrast to the
RX Engine, in the TX Engine the session ID is known when the
event arrives and thus the data structures can be immediately
queried for all the necessary meta-data required to generate
the packet. A reverse lookup is however needed to determine
the source and destination IP addresses and TCP ports from
the session ID. Upon completing these actions, the TX Engine
triggers other modules to construct the TCP header, fetch data
from external memory for the payload if needed and compute
the TCP checksum. Headers and payload are then concatenated
and streamed out to the IP Output Handler.

B. Life of a Packet

This section describes the life of a packet for the typical
three-way TCP handshake when a session is set-up. This
highlights many different event types and shows the interaction
between the RX and TX Engine. In this scenario, the FPGA
acts as a server and listens on a specific port while another
device connects as a client to that port.

1) A SYN packet arrives from the Ethernet Network Inter-
face

2) The IP Input Handler determines that this is a valid IP
packet and checks its IP checksum.

3) It then establishes that this is a TCP segment and forwards
it to the TCP module.

4) Within the TCP module, the TCP pseudo-header is first
constructed and the TCP checksum is verified.

5) Subsequently, the destination port is queried from the Port
Table and verified that it is in the LISTEN state.

6) Then a new entry is created in the Session Table and the
corresponding session ID is returned.

7) The RX Engine queries all meta information from State
and SAR Tables. After ensuring that this is a new con-
nection, the state is transitioned from LISTEN to SYN-
RCVD.

8) The RX Engine initializes the SAR tables and triggers a
SYN-ACK event.

9) The SYN-ACK event passes through the Event Engine
and reaches the TX Engine.

10) The TX Engine extracts the session ID from the SYN-
ACK event.

11) On the basis of this, the TX Engine then queries all
necessary meta information to construct a SYN-ACK
segment.

12) It then computes and inserts the TCP checksum as well
as part of the IP header with IP addresses and TCP ports.

13) The packet is streamed to the IP Output Handler which
computes and inserts the IP checksum. It also queries the
MAC address corresponding to the destination IP address
from the ARP Table and prepends the MAC header.

14) An ACK packet arrives to complete the handshake.
15) Again the IP Input Handler validates the packet as a TCP

segment.
16) The segment is then forwarded to the TCP module, where

the RX Engine parses and verifies the TCP checksum for
correctness.

17) The RX Engine queries the Port Table to ensure that the
port is still open for listening.
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18) Then the session ID is retrieved from the Session Lookup.
This time an entry already exists.

19) The RX Engine queries the state and meta information
from the State and SAR Tables respectively. After verify-
ing that the processed ACK is replying to the previously
sent SYN-ACK, the state is transitioned from SYN-
RCVD to ESTABLISHED. Pointers in the SAR Tables
are updated and written back.

20) The connection is now successfully established and data
can be exchanged.

C. Key Characteristics

This section expounds the key characteristics in our ar-
chitecture to meet the driving requirements, which include
10 Gbps line rate, scalability to high session count, out-of-order
processing, high-level synthesis, and support for flow-control.

1) 10 Gbps line-rate support: The TCP module was de-
signed to process traffic at high data rates with 10 Gbps link-
rate independently of the segment size which required a careful
investigation of all data paths. To ensure this, we have designed
the data paths between all modules in a data-flow fashion
with a 64b data bus clocked at 156.25 MHz. Furthermore,
we checked that external memory access requirements were
met. Roughly speaking, we require twice the incoming and
outgoing throughput in memory bandwidth, as every packet
in RX and TX direction is read and written once. Therefore,
the requirement amounted to 40 Gbps for the memory access
which is less than 17% of the total of 239 Gbps of theoretical
bandwidth that the two 64b 932 MHz SODIMM interfaces
found on the VC709 board provide. Since TCP segments might
be stored at any byte-offset and the length can vary to a great
extent, the actual required bandwidth might be significantly
higher depending on the workload. Finally, the most critical
aspect of the design are the shared central data structures as for
each segment, they have to be accessed and sometimes updated
from various modules simultaneously. It is crucial to verify
that even in the worst case, this process does not constrain the
bandwidth.
We first consider the available time budget and then evalu-
ate whether this requirement can be met for the most con-
tentious data structures: Minimum Ethernet frames together
with preamble and inter-frame gap amount to 84 B on the wire
(64 B + 8 B + 12 B). With that the highest possible packet
rate is around 15 million packets per second [Mpps]. Given a
data bus width of 64 b and a 156.25 MHz clock frequency, the
TCP module has to accept a new segment every 11 cycles
which forms then the upper limit for all connection state
processing. We, thus, have to ensure that all sub-modules have
timely access to this state information and can complete their
processing within the given time limit.
The modules in which the highest contention occurs are the
State Table, RX SAR and TX SAR Table. As seen in Fig. 2 they
are accessed from the two protocol engines and the application
interfaces. As explained above, we need to service all accessing
modules in the budgeted 11 cycle window. For this, we have
detailed all the required accesses in TABLE I. The State
Table is accessed from the RX Engine which performs a
RMW operation and from the TX App If which reads the
state of a connection before sending data out. Because these
two accesses might happen concurrently, the entry which is
undergoing a RMW operation has to be locked to ensure

TABLE I. CONCURRENT ACCESS TO THE MOST CONTENTIOUS DATA

STRUCTURES

State Table RX SAR TX SAR
source type cycles source type cycles source type cycles

RX Eng rmw 5 RX Eng r 2 RX Eng r 2

TX App r 2 RX App If r 3 TX Eng r 4

TX Eng r 4 RX Eng w 1

RX Eng w 1 TX App If w 1

RX App If w 1 TX Eng w 1

Total 7 11 9

consistency. As listed, the locked access from the RX Engine
takes 5 cycles. Assuming the worst case in which the TX App If
accesses the same entry simultaneously, an additional 2 cycles
have to be budgeted for a read access. This brings the total
number of cycles per packet to 7, which is well within the
budget.
The RX SAR Table is more contentious as it is being accessed
from three modules, namely the RX Engine, the RX App If
and the TX Engine. The latter only does a read operation
while the former two perform both RMW operations. However,
as the modules all operate on separate aspects of the data
structure, a locking during the RMW cycles is not required
and operations can be interleaved. As shown in the table, the
three read operations are followed by the two write operations
which brings the sum to 11 cycles and exactly fits the budgeted
window. Similarly, the TX SAR Table is accessed by the RX
Engine, the TX App If and the TX Engine. Like the RX
SAR, all modules can concurrently access without jeopardizing
consistency as they are processing different fields of the data
structure. The table shows the two read operations followed
by the three write operations taking in total 9 cycles, which is
well within the budget. With that, all data paths of the system
are designed to sustain the line-rate requirement.

2) Scalability: As mentioned previously, a critical aspect
of our architecture was that the resource requirements scale
linearly with the number of supported sessions such that we
can support deployments in data centers where thousands
of servers communicate directly with each other. The only
aspect in the design that changes with increasing session
count are the data structures and buffers. The packet buffers
are stored externally, and as previously determined require
64 KB×2×number of sessions. Even for 10 K sessions, this
amounts to 1.3 GB which can easily be met with one 2 GB
SODIMM. Given current DRAM support in today’s devices
(around 256 GB per 20nm device), it is feasible to support up
to 1.97 million sessions from a packet buffering perspective.
More critical are the resource requirements of the internal
data structures. All tables (State, Port, SAR) and Timers hold
one entry per connection as discussed in section IV, therefore
they scale linearly. Further, the session lookup data structure
also scales linearly with the number of sessions as has been
shown in [20]. Thus, scaling is linear with number of supported
sessions and limited by the amount of BRAM inside the
FPGA while LUT and FlipFlop usage will remain mostly
constant. Upper limits are discussed in section V. Further
scaling, using external SRAM, is possible, however DRAM
is not feasible as the data structures need to support a high
access bandwidth with a fine granular access as discussed in
the previous paragraphs.
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3) Out-of-Order (OOO) Packet Processing: Packets can
be dropped or re-ordered due to priorities or simply because
they took different routes through the internet. Our design
supports out-of-order reception of TCP segments as it offers a
severe reduction in packet retransmissions, therefore improving
the effective throughput of the system. The OOO processing
occurs in the RX Engine and makes use of the RX Buffer and
RX SAR table. The OOO segments are arranged into OOO
blocks that consist of two pointers: the length of the block &
the offset of the block from received, as seen in Fig. 3 which in
essence equates to the sum of the sequence (SEQ) number and
payload length of the previous in-order segment2. Each pointer
is 13 bits by default, which is less than the 32 bits of SEQ
number required otherwise. This saves 38 bits per block, which
is significant across 10,000 sessions. The RX Engine expects
the SEQ number of each packet it receives to be the same as
received. If this is not the case, the packet is considered to be
out-of-order and the following steps are executed:

1) If the SEQ number is between read by app and received,
then the packet is dropped as it has already been received.

2) Otherwise, the OOO segment is accepted. The payload is
written directly into the RX Buffer and the two pointers
to the block are written to the RX SAR table.

3) If OOO segments overlap or are adjacent to previously
received OOO data, then the pointers are updated accord-
ingly.

Similarly to standard Linux TCP/IP stack, the OOO processing
functionality in our design is highly customizable as the max-
imum number of OOO segments and the maximum distance
to received are defined through global variables. This way
it is possible to tweak the OOO processing to a particular
application, or omit it entirely.

4) Flow Control & Performance Optimizations: Although
flow control and congestion avoidance are essential features
of TCP/IP, the focus of our work was on a scalable and high
throughput architecture. We have adopted a simplified variation
of the Slow Start algorithm as detailed in RFC5681[25] with an
aim to limit the design’s complexity. As an optimization, the
so-called initial Congestion Window is set to 10×Maximum
Segment Size as proposed by [26]. The Congestion Avoidance
algorithm, which takes over after Slow Start, increases the
window size in incremental steps. There are much more
elaborate approaches used in real-world deployment such as
TCP New Reno, TCP BIC, TCP CUBIC or Compound TCP.
We defer the addition of such functionality to future work.
In regards to TCP performance optimizations, we implemented
the following two additions: Firstly, to avoid the so-called
small packet issue, where an application emits data in small
chunks frequently only 1 byte in size, the TCP module makes
use of Nagle’s algorithm [27]. Secondly, we also support Fast
retransmit as proposed in RFC2581 [28] which triggers a
retransmit on duplicate acknowledgments, such that packet loss
is detected before the retransmission timer times-out which
decreases the retransmission latency significantly.

5) Using High-Level Synthesis (HLS): To speed up the
development time and improve design flexibility, we have
written the entire design in C++ using Vivado HLS [29]. This
includes all modules in the stack, namely ARP, ICMP, UDP,

2Wrap-arounds of SEQ numbers and pointers are being considered.

TABLE II. LINES OF C++ CODE

IP Handlers ARP Server ICMP Server TCP Total
LoC 927 293 425 5,778 7,423

TCP, DHCP and IP handlers, the only exception being the
session lookup module for which we leveraged an existing
implementation.
HLS provides significantly higher design abstractions such as
data structures, built-in concepts for data streams with hidden
flow control, simplified stitching of modules, and automated
BRAM and FIFO instantiations. With that, the code becomes
much more expressive, focused on the actual functionality and
less cluttered with hardware design details. To illustrate this,
TABLE II quantifies the number of lines of code for the current
prototype implementation and its submodules. With a smaller
more expressive code base, its legibility and maintainability
are enhanced. Furthermore, it is easier to trim a design to spe-
cific requirements, thereby minimizing its resource and power
footprint, and to make more complex, algorithmic changes,
such as congestion avoidance and flow control schemes. As
an added bonus the code becomes more portable and can be
synthesized for any supported family.

V. EVALUATION

In this secction our implementation is evaluated in regards
to throughput, latency and resource consumption. Scalability
and flexibility have been sufficiently discussed in section IV-C.
For the performance evaluation, we utilized the following
setup: The presented network stack was implemented and
validated on a Xilinx VC709 evaluation board which features
a Xilinx Virtex7 XC7VX690T FPGA. The design utilizes two
932 MHz DDR3 SODIMMs with 4 GB each and one 10 G
network interface. In the experimental setup, the VC709 is
connected via a Cisco Nexus 5596UP switch to ten servers,
each equipped with an 8 Core Intel Xeon E5-2609 clocked at
2.4 GHz and 64 GB of main memory, running Linux (kernel
3.12) and an Intel 82599 10G Ethernet Controller.

A. Throughput

In our testbed, we operate the FPGA as a standalone
device where the application is completely contained within
the FPGA. The test application consumes all incoming packets
and independently generates a stream of outgoing packets.
All measurements report application-level throughput which
is the throughput that the application can effectively achieve.
Obviously, its maximum value is lower than the actual link
bandwidth of 10 Gbps and depends on the MSS which affects
the ratio between actually transmitted data and its overhead.
Our TCP module uses the default MSS value of 536 B. Taking
the packet overhead consisting of Ethernet, IP and TCP headers
into account, we can compute the maximum possible TCP
throughput to be:

10Gbps ∗ (536B ∗ 8)
(536B + 24B + 12B + 40B) ∗ 8 = 8.76Gbps

8.76 Gbps should be considered an upper bound since some
segments, e.g. SYN, ACK, are much smaller than the MSS
and other non-TCP packets, like ARP, are also consuming part
of the available bandwidth.
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Fig. 4. Throughput depending on number of simultaneous connections
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Fig. 5. Scaling number of simultaneous connections with fixed throughput
per connection

1) High Load: To test the RX path, two servers generated
traffic. For testing the TX path eight nodes were used to
consume traffic coming from the FPGA whereby the number
of concurrent connections was step-wise increased from 25 to
10,000. Each measurement took 120 s. The software clients
measured the application throughput and the overall sum of
all connections is plotted in Fig. 4 against the maximum
theoretical throughput of 8.76 Gbps. On the RX side, 8.5 Gbps
is reached with 25 connections while on the TX side 500
connections are required to reach 8.6 Gbps. The discrepancy
stems from the servers not being able to consume the data
at link-rate which leads to packet drops and retransmissions.
With increasing number of connections, the load is better
distributed between the different machines which reduces
packet drop rates, and with that retransmissions and its
negative impact on throughput.

2) Quality of Service: A further experiment aimed at
illustrating how well the TCP module can service multiple
connections when each connection uses limited but constant
throughput. Two nodes are sending 96 KB of data roughly
every 800 ms to achieve an average throughput of 1 Mbps per

TABLE III. STACK LATENCIES

Type Cycle [6.4 ns] Time[μs]

SYN-ACK 176 1.1

Payload [1 B] 170 (RX) + 131 (TX) 1.1 + 0.8

Payload [536 B] 375 (RX) + 402 (TX) 2.4 + 2.6

TABLE IV. RESOURCE USAGE ON VC709

Network Memory TCP/IP Total % of XC7VX690T

Interface Interface Stack Resources

FF 5,581 57,637 20,611 83,829 9.6%
LUT 5,321 43,591 19,026 67,938 15.6%
BRAM 8 36 279 323 21.9%

connection whereby the number of concurrent connections is
increased from 2 to 10,000 in steps of 250. Fig. 5 shows
the sum of the measured RX throughput in relation to the
theoretical maximum throughput as a function of active con-
nections. As can be seen from the graph, the throughput scales
linearly with increasing number of connections whereby the
discrepancy increases with the number of connections. The
reasons for this are twofold: Firstly, the chance for packet
drops increases with more connections and in comparison to
the High Load experiment, connections cannot compensate for
each other as they are all limited to a maximum of 1 Mbps
throughput. Secondly, an increasing number of control and
management packets are on the network which reduces the
amount of available bandwidth.

B. Latency

Latency was not the primary concern in our implementa-
tion, however it is an important characteristic of a network
stack. With this in mind, we have measured the latency of
our design in conjunction with a simple loopback application
on the FPGA. Traffic was generated as described above and
cycle-accurate latency was measured inside the FPGA with an
embedded logic analyzer, namely Chipscope [30]. TABLE III
lists the measured results which represent the time from the
first word entering our network stack (as indicated within
the dashed lines in Fig. 1) to the first word leaving it. The
remaining latency through GTX, PHY, and MAC adds no more
than 300 ns as we have observed in our projects. In regards to
the table, the first row indicates the time it takes to send a
SYN-ACK segment after arrival of a SYN as measured from
ingress to egress of the stack. In this path, no external memory
is involved. In the bottom 2 rows, we show the latency of a
basic data packet with either 1 B or 536 B payload measured
at the network interface and the application interface (RX) and
vice versa (TX). The RX and TX path both have one read and
write access to the external memory. As expected, segments
with larger payloads incur higher latencies due to the additional
DRAM access time and the TCP checksum verification (RX
side) and calculation (TX side) which require buffering of a full
segment before proceeding. Direct comparisons to processor-
based platforms are difficult to conduct, however typical net-
work to applications (RX) and application to network (TX)
latencies as reported in [8] are in the range of 2μs - 20μs.
With that we are well competitive.
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C. Resources

TABLE IV lists the resource usage of our prototype in both
absolute and relative terms. Network and memory interfaces
are existing Xilinx IP cores while the TCP/IP stack is the work
covered in this paper. Combined, the design utilizes around
83,000 Flip-Flop’s and 68,000 LUT’s respectively which
equates to 9.6% and 15.6% of the overall available resources.
All our data structures are using BRAMs with mostly linear
dependency on the number of supported sessions with a small
exception of the FIFO queues within the data-flow architecture.
For 10,000 sessions, this amounts to 21.9%. Given this, we
would argue that the design leaves sufficient space on the given
device to implement large-scale applications even for a large
amount of concurrently active sessions. Conversely, we can
calculate an upper bound for number of supported sessions
for a XC7VX690T device (as used on the VC709) with 1470
36 kb BRAM blocks and a XCVU190 [19] with 3780 36 kb
BRAM blocks to be 44,148 and 115,665 sessions respectively.

VI. CONCLUSION

In this work we have presented a novel architecture imple-
menting an entire TCP/IP stack on a programmable device.
This architecture is designed for processing 10 Gbps data
full-duplex, while handling thousands of concurrent sessions.
The architecture’s resource requirements scale linearly with
the number of supported sessions to over 115,000 given
today’s 20 nm devices. The design was implemented almost
entirely using C++, which shortened development significantly,
simplified verification and provides greater design flexibility.
The implementation encompasses flow control and out-of-
order processing. Finally, we evaluated our design on a Xilinx
VC709 development platform using a combination of software
tests, proving performance, compatibility and robustness.
Future work includes adding support for key TCP options,
more elaborate flow control interfaces and caching of selective
session packet buffers in on-chip RAM.
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