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Abstract—Accelerating relational databases in general and
SQL in particular has become an important topic given the
challenges arising from large data collections and increasingly
complex workloads. Most existing work, however, has been
focused on either accelerating a single operator (e.g., a join) or
in data reduction along the data path (e.g., from disk to CPU).
In this paper we focus instead on the system aspects of accel-
erating a relational engine in hybrid CPU-FPGA architectures.
In particular, we present Centaur, a framework running on the
FPGA that allows the dynamic allocation of FPGA operators
to query plans, pipelining these operators among themselves
when needed, and the hybrid execution of operator pipelines
running on the CPU and the FPGA. Centaur is fully compatible
with relational engines as we demonstrate through its seamless
integration with MonetDB, a popular column store database. In
the paper, we describe how this integration is achieved, and
empirically demonstrate the advantages of such an approach.
The main contribution of the paper is to provide a realistic
solution for accelerating SQL that is compatible with existing
database architectures, thereby opening up the possibilities for
further exploration of FPGA based data processing.

I. INTRODUCTION

Traditionally the scope of operators and data types in
relational databases is limited. The operators are defined by
SQL and the data can only be stored in basic and well defined
data types. As a result, database engines are able to highly
optimize the operator implementations for each data type
and CPU architecture. Additionally, most database operators
have a relatively low computational complexity. However, the
rise in data sizes leads to new challenges and opportunities.
There, is in particular, increasing interest in complex analytics
operations in the context of machine learning, statistics, and
graph analytics. Given that traditional databases are not able to
perform well on these complex operators and data types, ac-
celerators offer an alternative way to implement such complex
functionality in databases. An important question arising here
is how to integrate an accelerator like an FPGA in a database
engine.

Databases are throughput oriented, processing thousands
to several hundred thousand queries per second. This means
the type of operators potentially offloaded to the FPGA are
constantly changing. In addition, the database engine should be
able to run hybrid queries combining FPGA and CPU operators
in any order to harness the benefits of both FPGA accelerators
and highly optimized CPU operators.

State-of-the-art research has shown clear benefits from
offloading database operators to the FPGA [28], [9], [12], [30].
To avoid the overhead of additional data movement, many
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approaches place the FPGA on the data path as a bump-in-the-
wire accelerator between storage (or network) and the CPU.
As a result, only a limited number of operators in the query
tree can be pushed to the accelerator. Therefore, the actual
integration of hardware accelerators into a database engine is
still an open problem.

In this paper we present Centaur, a framework bridging
the gap between the database engine on the CPU and database
operators running on the FPGA. In Centaur, we focus on the
system aspects of integrating FPGA operators into a database
engine rather than on the implementation of the operators
themselves. Centaur provides software abstractions for the
operators and a thin hardware layer to facilitate concurrent and
dynamic offloading of operators to the FPGA. In developing
Centaur, we have three objectives that are essential for enabling
FPGA accelerators in databases: i) Seamless integration within
the operator tree execution model of databases; ii) Support for
hybrid execution with operators running both on the CPU and
FPGA; iii) Flexible deployment of operators on the FPGA to
support concurrent queries, operator pipelining, and dynamic
allocation to different queries.

For a seamless integration of the FPGA operators, Centaur
makes use of user defined functions (UDFs) common in
databases. This makes deployment of operators either to CPU
or FPGA transparent to the database engine. Centaur supports
pipelining of software and hardware operators thus enabling
hybrid query execution. With Centaur, lightweight operators
can remain on the CPU and only compute-intense operators
are offloaded to the FPGA. Hardware operators can also be
pipelined to reduce data movement between the FPGA and
main memory and improve performance further.

Centaur is tailored for CPU-FPGA shared memory plat-
forms where the FPGA operators have direct coherent access
to the same memory region as the CPU such as Intel’s
Xeon+FPGA [18] and IBM’s Power8 CAPI [20] architectures.
Thanks to coherent shared memory, the FPGA operators are
active workers which autonomously issue memory reads and
writes. This autonomy enables hybrid query execution. To
demonstrate Centaur’s concepts and techniques, we have inte-
grated it into the popular open source database MonetDB [23].

The paper makes the following contributions:

e A high-level software abstraction for hardware opera-
tors, called FThreads.

e  Hardware architecture that facilitates concurrent and
dynamic offload of database operators to the FPGA.

e  Dynamic pipelining of operators to overlap processing
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SELECT *

FROM emp el, emp e2
WHERE el.manager = 0
AND e2.manager = 1
AND el.salary > e2.salary
AND el.dept = e2.dept;

el.salary > e2.salary

G:lmanager:@ GZ.manager:D

T T

emp el emp e2

Fig. 1: Example query and operator tree

of either hardware and software or multiple hardware
operators.

Exploring and demonstrating the functional integration
of FPGA accelerators into a database engine through
UDFs.

Centaur has been developed on the Intel’s HARP vl
prototype machine [18]!, which does not support partial re-
configuration. Accordingly, Centaur does not provide dynamic
reconfiguration and the FPGA has to be programed a priori.
However, no changes are required to Centaurs software or
hardware when switching between different FPGA configu-
rations. Partial reconfiguration will be available in the next
version of Centaur, which will run on HARP v2.

II. BACKGROUND

A. MonetDB

Centaur has been used to integrate FPGA accelerators into
MonetDB [23], an open source column store. In a column
store, the database tables and their records are partitioned
vertically, resulting in one column per attribute. Since many
operations in a database are memory-bound, this can lead to
a performance improvement depending on the workload. In
the meanwhile, most engines supporting analytical queries are
column oriented (e.g., SAP Hana [5]). The specific column
data layout used in MonetDB are binary association tables
(BAT). Each BAT consists of two columns, the first storing an
optional object identifier (OID) and the second column storing
a value. The value column has a specific data type. The original
data and also all intermediate results are stored in BATs.

1) Operator Tree: The task of the query optimizer in a
database is to combine the operators used in a query into
an operator tree. Figure 1 shows an example query and the
corresponding operator tree. As we can see in the first stage,
the two select operators, evaluating if an employee is a man-
ager, read data directly from the employee base table identified
as el and e2. In the next step the records produced from
the two select operators are joined based on the department
attribute (el.dept = e2.dept) and in the third stage another
select operator compares the salary of employees el with

IResults in this publication were generated using pre-production hardware
and software donated to us by Intel, and may not reflect the performance of
production or future systems.
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the managers e2. In the last step all records matching the
previous criteria are returned as a result. When building the
operator tree, the query optimizer considers the dependencies
between different operators and also the cost model for each
operator to calculate the optimal execution order. Having this
flexibility of combining operators at runtime means they need
to implement a well-defined interface and follow the same
execution model. Centaur’s FPGA based operators employ the
user defined function (UDF) interface, thereby guaranteeing
that hardware operators can be accessed through the same well-
defined interface as software operators.

2) User Defined Functions (UDFs): Many databases can be
extended with UDFs. For our work, we use the UDF interface
to extend MonetDB with operators implemented on the FPGA.
Using a UDF is like using any other function in the database,
as can be seen from the following query:

SELECT COUNT(x) FROM product_sales
WHERE quantity > 1
AND foobar(price) < 10;

The UDF called foobar() operates on the price attribute and
returns a value which is then compared to the value 10. Since
UDFs implement the same interface as other operators, the
query optimizer can integrate and execute them seamlessly as
part of the operator tree.

Most databases only allow UDFs which operate on one
tuple at a time which means the database invokes the UDF
for each record. For FPGA based UDFs, handing over every
record individually is not efficient. However, MonetDB also
allows UDFs to operator on a complete BAT, thus minimizing
the overhead of invoking an operator on the FPGA. In Centaur,
we exclusively use the BAT interface.

III. SYSTEM OVERVIEW

Figure 2 depicts the main components of Centaur. Since
Centaur bridges the gap between the hardware operators and
the database, it has two main components, one in software
and one in hardware. It provides an Application Interface
(Figure 2) on the software side and the FThreads Manager on
the FPGA. Centaur defines templates and interfaces that allow
developers to extend Centaur with more hardware operators
through the UDF and Operator library. Centaur builds on the
low level communication interface provided with the Intel’s
Xeon+FPGA platform. Intel provides an Accelerator Abstrac-
tion Layer(AAL) and encrypted QPI endpoint. Through AAL,
Centaur bootstraps the FPGA, configures the QPI endpoint,
and writes the base address of the CPU-FPGA shared memory
region into an FPGA register.

A. Software Components

The Application Interface provides software abstractions to
create and monitor hardware threads, called FThreads, which
map to FPGA operators. FThreads have a similar interface as
the software threads in the C++ standard library (std::thread).
Through the Application Interface, MonetDB can access the
custom memory allocator in Centaur to allocate BATs in the
CPU-FPGA shared memory region so the FPGA operators
can access them. In addition, it provides concurrency control
such that multiple queries can access the FPGA in parallel.
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Fig. 2: Centaur overview.

In addition to the Application Interface, Centaur presents
an extensible hardware operators library. Although Centaur
in itself does not provide a comprehensive set of database
operators, the operators library was designed to be easily
extended with additional hardware operators.

B. Hardware Components

Centaur’s FThreads Manager is responsible for mapping
hardware operator requests generated by the UDFs to the cor-
responding Operator Units. An Operator Unit is the hardware
implementation of a single database operator (such as select
or aggregation). They are connected to Centaur’s FThreads
Manager through a well defined interface as will be discussed
in section V.

The FThreads Manager time multiplexes access to the QPI
interface between the multiple Operator Units. In addition, it
can dynamically compose hardware and/or software operators
into a pipeline as we will discuss in Section IV-D. Centaur
connects adjacent Operator Units with FIFOs to pipeline
FThreads running on two adjacent units. Hence, only two or
more successive operators can be pipelined as Figure 2 shows.

C. CPU-FPGA Communication

When a MonetDB database instance is started, a hand-
shake is established between the Application Interface and
the FThreads Manager. Then the base address of the shared
memory region is written to the FThreads Manager using AAL
primitives. After this step, both the Application Interface and
FThreads Manager have access to the same memory region
and can use it for further communication.

The Application Interface passes requests to run hardware
operators to the FPGA through a set of concurrent queues
which reside in the shared memory. When a UDF requests
a hardware operator, the request is packaged in the proper
format and then enqueued into the corresponding queue. The
FThreads Manager polls on the queues looking for new re-
quests. Whenever there is a request in a queue, it reads it
and assigns it to a free Operator Unit of the same type. In
the same way, when an Operator Unit finishes execution, it
writes its status to a shared memory address monitored by the
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UDF which initiated the operator. As polling on main memory
from the FPGA introduces a memory bandwidth overhead, we
tune the polling interval to find a balance between the request
processing delay and the bandwidth overhead. The resulting
overhead is negligible as shown in section VI-B.

Using shared memory for communication is a platform in-
dependent approach that facilitates porting Centaur to different
CPU-FPGA shared memory architectures.

IV. APPLICATION INTERFACE
A. Shared Memory Management

Due to the fact that not all the main memory region
is shared between CPU and FPGA (only 4 GB is shared),
the Application Interface implements a custom memory al-
locator which provides malloc() and free() functions to al-
locate/deallocate data chunks in the shared memory region.
We modified MonetDB’s memory allocation to use Centaur’s
memory allocator to allocate and deallocate BATs so they
are accessible from the FPGA. Allocating BATs directly in
the shared memory region avoids copying them from non-
shared to shared memory when an FPGA operator is invoked.
Further, all data structures used for communication between
the Application Interface and the FThreads Manager are also
allocated through this allocator. We expect that in future
versions of the Xeon+FPGA platform these limitations will
disappear and the FPGA will have access to the complete
memory address space through the standard operating system
memory allocator.

B. FPGA Operators Abstraction

The Application Interface provides an extensible library of
FPGA operators which can be invoked from UDFs. Adding an
operator to the library involves two things: An RTL implemen-
tation of the operator which is designed in compliance with
the FThreads Manager 1/O interface and a software function
which encapsulates the operator OPCODE and its arguments
in a data structure called operator descriptor. The operator
descriptor is used to create an FThread instance which is then
deployed on the FPGA. Through the FThread interface, users
can query the status of the operator while running on the FPGA
to detect if it is done or monitor performance metrics.

C. Hardware User Defined Functions

In Figure 3 we show an example of a hardware UDF that
invokes the festcount operator by first calling the wrapper
function fpga_testcount() from the operators library. It then
passes the returned operator descriptor object to the FThread
constructor which will create the corresponding FThread re-
quest and forward it to the FPGA through the concurrent

testcount(test , value, src, dst) {
// Create Job Request

FThread tc_fthread (fpga_testcount(test ,value,src,dst));

// Wait for FThread to finish
tc_fthread.join ()

Fig. 3: Typical hardware UDF structure



queues. The created FThread request (named fc_fthread in the
UDF) is joinable in the same way a software thread is joined.

D. Composing Operator Pipelines in a UDF

The operator tree model of a query plan (refer to Figure 1)
and the column-at-a-time execution model in MonetDB makes
operator pipelining a natural match for the operator execution
model in Centaur. In software, pipelining operators incurs an
overhead due to software thread synchronization. On the other
hand, in hardware, there is no synchronization overhead since
data is passed through hardware FIFOs. In fact, pipelining of
hardware operators reduces the required bandwidth to main
memory improving overall throughput. Centaur provides the
PipelineJob and FPipe abstractions which allows the UDF to
compose operator pipelines to benefit from data locality on
the FPGA and to overlap the execution of two operators to
increase performance.

Figure 4 shows an example of a hardware UDF that com-
bines a regex operator (regular expression matching operator)
and a testcount operator. Both reside on the FPGA, which will
essentially return the count of matches from the regex operator.

First an FPipe object is allocated for the two operators.
The FPipe data type is passed to the template function
allocate_fpipe<short> (). In the example, the short
data type (C++ data type) is used since the data type of
regex output is 16bits. Once the FPipe object is allocated,
the PipelineJob request is created by passing the operators
descriptors (regex and festcount) and the FPipe object.

A pipeline of two software and hardware operators can
be created in a similar way. Instead of the FPipe data struc-
ture which implements a FIFO in the FPGA, the FQueue
data structure can be used. The FQueue is a single-producer
single-consumer concurrent FIFO which resides in the shared
memory space such that it is accessible from software and
hardware threads. Centaur will allocate the FQueue to pipeline
two hardware operators if they cannot be connected through
an on-chip FIFO. The FPipe and FQueue abstractions can be
considered similar to OpenCL pipes [14].

It is the responsibility of the UDF developer to decide if a
pipeline should be created between two operators or not. As
Centaur only connects adjacent Operator Units with on-chip
FIFOs on the FPGA, it will create an FQueue pipeline resource
between two hardware operators if the corresponding Operator
Units are not connected through on-chip FIFO on the FPGA.

regexcount(src, expr, dst) {

// Allocate Pipeline resource

FPipex pipe allocate_fpipe <short >(REGEX_OP, TESTCOUNT_OP
)3

// Create Pipeline Job Request
PipelineJob regexcount_job(fpga_regex (expr, src,
pipe, fpga_testcount(’>", 0, pipe,

pipe),
dst) );

// Wait for Pipeline Job to finish
regexcount_job.join ();

Fig. 4: Creation of on-chip pipeline job
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Fig. 5: FThreads Manager architecture.

E. Concurrent Execution of Queries

A key requirement in accelerating database workloads is
the ability to execute different queries (from different clients)
concurrently. The Application Interface does not provide the
notion of FPGA ownership for a single query. MonetDB
clients (each running in its own software thread) will compete
to insert job requests (UDF calls) into the concurrent job
queues. The Application Interface provides a different queue
for every operator type. This makes scheduling of operator
requests from different types completely independent of each
other. This is possible, because the FThreads Manager on the
FPGA monitors the job queues and processes queued requests
independently of each other.

The FThread is the scheduling unit, where an Operator Unit
(Figure 2) executes an FThread to completion before executing
the next FThread. Only when executing a pipeline of operators,
the pipelined FThreads are scheduled as a group to avoid stalls
that could degrade the performance of the pipeline. How the
FThreads Manager processes and schedules incoming FThread
requests through job queues is discussed in Section V.

V. FTHREADS MANAGER

In this section we describe the architecture of the FThreads
Manager (Figure 5). It has three main components: a Job
Manager which polls on concurrent job queues and fetches job
requests; a Memory Management Unit which time multiplexes
the I/O interfaces and handles virtual address translation; and
an FThread Interface Unit which provides communication
abstractions for the operators.

A. Job Manager Unit

The Job Manager is responsible for fetching and processing
job requests inserted by the Application Interface into the
concurrent queues. Initially, when the CPU-FPGA handshake
is established, the Job Fetchers start polling on the concurrent
queues in the shared memory region (see Figure 5). There are
as many Job Fetchers as there are job queues (the maximum
number of job queues is limited by the number of Operator
Units on the FPGA).



A job request includes either a request for a single oper-
ator (i.e., a single FThread execution) or multiple operators
configured as a pipeline. Once a Job Fetcher fetches a job
request, the Job Distributor will try to assign the requested
operator(s) to free Operator Unit(s) of that operator type. In
case of multiple operators per request, it looks for adjacent
Operator Units. If the requested Operator Unit is free, the Job
Distributor sends a command to it, holding all the parameters
necessary for the execution. However, if the requested Operator
Unit is busy, the job is queued until the required Operator Unit
is free, and the corresponding Job Fetcher pauses fetching. The
Job Distributor is able to observe the state of all job queues
and processes available requests in a round-robin fashion. The
Job Distributor spends 1 cycle processing a Job Fetcher output,
and continues to process the next Job Fetchers.

B. Memory Management Units

Since the current version of Intel’s QPI IP provides one
read and one write channel, a data arbiter multiplexes read and
write requests from different operators. The FPGA contains a
page table of 2000 entries (addressing 4 GB of memory), to do
the address translation from virtual to physical addresses. Each
entry in the page is 17-bit wide and represents a 2 MB super
page. The page table sits on the path between the QPI IP and
the data arbiter. It is implemented in BRAM and is only loaded
once during the handshake between the Application Interface
and the FThreads Manager and is not updated afterwards.

C. FThread Interface Unit

The FThread Interface Unit (Figure 5) implements the
hardware support for the FThread abstraction in the Ap-
plication Interface. Every FThread is assigned two memory
pointers: One pointer to the location of its status data structure
and another pointer to the data structure holding the operator
arguments. When the FThread Interface Unit receives a new
operator command, it first loads the arguments from main
memory and then triggers the Operator Unit to start execution.
This initialization of an FThread resembles the process of
creating a software thread. Similarly, when the Operator Unit
terminates, the FThread Interface Unit updates the status data
structure. From the UDF’s perspective, the call to the join()
function of the FThread object returns indicating that the
execution on the hardware terminated.

In addition to these control mechanisms, the FThread
Interface Unit provides an abstraction for memory access from
the operator. On top of raw address based memory access,
the operator can use a FIFO abstraction with simple push/pop
semantics. This FIFO abstraction can be mapped to hardware
FIFOs (512-bits wide) or FQueues (shared memory). Thanks
to this abstraction, it is transparent to the operator if it is using
a hardware FIFO or an FQueue. Centaur uses this abstractions
to dynamically pipeline operators as explained in Section IV-D.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We use Intel’s Xeon+FPGA platform with MonetDB to
deploy Centaur. The Intel’s Xeon+FPGA platform is a two-
socket machine with a 10-core Intel Xeon E5-2680 v2 CPU
(clocked at 2.8 GHz) in one socket and an Altera Stratix
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TABLE I: Database operators for the experiments.

Name Description

regex Regular expression matching on a column of strings

testcount Test entries of column of integers against given condition and counts
the matches.

percentage | For a given column of integers it computes the sum of selected entries
divided by the sum of all entries.

muladd Evaluates "a * X + b” for column X of integers.

V 5SGXEA in the other. The two sockets are connected
through QPI. On the CPU socket, 96 GB of main memory
are installed, accessible to the FPGA through the QPI link.
No DDR memory is attached to the FPGA socket. Memory
access from the FPGA is bound by the bandwidth of the QPI
link which we measured to peak at 6 GB/s. In contrast, the
CPU has direct access to the memory resulting in up to 25 GB/s
memory bandwidth.

We modified MonetDB version 11.21.19 to integrate the
Application Interface of Centaur and allow hardware UDFs to
execute on the FPGA. The FPGA architecture of Centaur is
configured with 4 Operator Units and clocked at a frequency
of 200 MHz.

B. Microbenchmark: Centaur Overhead

To evaluate the overhead of the FThreads Manager on the
QPI throughput consumed by the FThreads, we compared a
copy operator (i.e., read a cache line and write it back) to
the Intel AAL loop-back benchmark provided by Intel. The
overhead measured is negligible: 1.6%. The small overhead is
caused by the Job Fetchers in the Job Manager which poll
on the concurrent job queues in shared memory. The QPI
throughput consumed by Job Fetchers can be tuned against the
response time for enqueuing a job request in the job queues.
From our experiments we found that the throughput overhead
can be minimized to less than 0.2%, at a response time of
12.7us, which is acceptable when queries run for milliseconds.
We chose a point with approximately 3 js response time and
around 100M B throughput as the optimal point (1.6% of QPI
throughput).

Centaur incurs a 78 us overhead over the operator exe-
cution time. Most of this time is consumed in creating the
FThreads, as well as allocating and freeing shared memory
regions. A very small fraction of the time (3us) is consumed
in enqueuing the FThread request, preprocessing on the FPGA,
and writing the DONE status back. For queries taking a few
milliseconds or more to execute, this is an acceptable overhead.

C. Pipelining Operators

In this section we evaluate the benefits of Centaur’s pipelin-
ing mechanisms between operator units. Table I lists the oper-
ators we used in this evaluation. As our objective is to show
how different operators can be combined and used in Centaur
and not the operators performance, the chosen operators reflect
different I/O behavior. The muladd is a streaming operator that
reads and writes at line rate. The percentage operator reads at
line rate from multiple sources (two columns) and writes back
a scalar value. The testcount operator reads from one column
at line rate and produces a single scalar value. The Regex is



Ql: SELECT regexcount(comment
*[7—9]*.(rating | rank | grade) )

FROM product_sales;

Q2: SELECT regexpercentage (°[7—9]*.(rating |rank |

grade)’, comment, revenue)

FROM product_sales;

Q3: SELECT muladdpercentage (2, 1,

FROM product_sales;

revenue)

Fig. 6: Queries executed on product sales data using the
Combined operators UDF.
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Fig. 7: Throughput for different ways of combining operators.

a more complex operator which alternates between reading a
block of string pointers and string data. It consumes almost
the complete available memory bandwidth.

For the Regex operator, we base our implementation on
state-of-the-art approaches [22], [29]. Figure 6 shows the
queries we run for the combined operators experiments. The
experiments run on a table of size 1.25M records. We im-
plement a UDF for each operator combination using either a
hardware to hardware pipeline or a hardware-software pipeline,
as explained in Section IV-C.

We experimented with 4 different scenarios of combining
operators as Figure 7 shows. "SW only” runs all operators on
the CPU, "HW only” deploys both operators in hardware but
without pipelining them. "HW pipe” uses Centaur’s on-chip
pipelining mechanism between the two hardware operators.
Finally, "HW-SW” deploys the first operator (regex or muladd)
in hardware and the second operator on the CPU pipelined
through Centaur’s FQueue.

The experiments demonstrate that Centaur’s FThreads ab-
straction makes it possible to combine operators in all differ-
ent scenarios. The numbers in Figure 7 show that different
scenarios achieve different performance with pipelining and
that using hardware operators not always providing a benefit.
A noticeable benefit from on-chip pipelining occurs when the
two operators have relatively similar cost and produce/consume
data at same rate as is the for the pipeline of muladd and
percentage operators. Our objective here is to show that Cen-
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TABLE II: Workload Description

w1 w2
Queries #records #attributes #records #attributes
Regex 300K, 600K 600K, 1.25M
Skyline 100K, 1M 4,5,6,7 ‘ 100K, IM 4,5,8,12,16

taur supports all these scenarios and gives the query optimizer
the chance to choose where and how to deploy operators. A
subsequent step in developing Centaur is to model and expose
these different possible combinations to the query optimizer
to choose the proper query plan. This will be done as part
of future work (an example of what that entails can be found
in [25]).

D. Multi-Query Workloads

This experiment demonstrates how Centaur is behaving
when executing typical database workloads. In addition to the
Regex operator we used in the previous section, we use the
Skyline operator to synthesize mixed workloads of complex
and simple operators. Additional operators such as Kara et
al. [13] partitioning operator can be used in the same way.

Skyline query. For a given set of data records, for example
hotels information (number of stars, users rating, distance
to the beach, price, etc.), the skyline operator computes the
pareto-optimal front of the data set, where no data record is
dominated by any other record. We used Woods et al. [27]
implementation of the skyline operator. With increasing num-
ber of attributes, the execution time of the skyline operator
increases significantly. The skyline operator is an example
of iterative compute-bound operators with variable runtime
similar to many machine learning operators. It’s I/O behavior
resembles operators that access many different columns in a
burst fashion. The skyline operator we use is not memory
bound as it consumes around 1 GB/s of memory bandwidth.

We synthesized two workloads, both run 10 clients, and
each client runs 100 queries (table II). The 100 queries are
a mix of 90% simple queries and 10% complex queries (5%
Regex, and 5% Skyline). The first workload (WI) is designed
to have moderately complex queries, while the second work-
load (W2) increases the complexity of the skyline queries
by increasing the number of attributes. Figure 8 shows the
experiment results for the two workloads. We experimented
with three different scenarios: 1) All queries are executed in
software (SW). 2) Offload both Regex and Skyline to the FPGA
which is configured with 2 Regex and 2 Skyline operator units
(HW1I). 3) Offload only the skyline operator to the FPGA
which is configured it with 4 skyline operator units (HW2).

The numbers in Figure 8§ demonstrate that depending on the
database workloads a different system configuration achieves
the highest throughput. In the first workload, the cost of Regex
and Skyline operators is relatively similar, hence offloading
both operators to the FPGA delivers better performance. On
the other hand, the Skyline operator dominates the performance
of the second workload because Skyline queries that work on
12 and 16 attributes are very expensive (take from 2 to 3 min).
Hence using all the FPGA resources to accelerate the Skyline
operator, we achieve a higher performance.
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Fig. 8: Throughput for different ways of combining operators.

The results in this experiment motivates us to integrate
partial reconfiguration capabilities in Centaur. Due limitations
of the hardware, we could not provide partial reconfiguration
capability in the current version of Centaur. However, Centaur
provides the environment and abstractions that makes dynamic
offloading of operators and managing the FPGA resources
feasible, a prerequisite for the ability to dynamically decide
which operators unit to reconfigure, load a new bitstream and
run on the FPGA. We plan to implement this in the next version
of Intel’s Xeon+FPGA platform.

E. Resource Utilization

Table III lists the amount of resources consumed by the
different components on the FPGA. We report the resource
utilization for a single FThread Interface Unit (not the 4 units)
to give an idea on how the resource utilization will scale when
varying the number of operators. The numbers in the brackets
are the percentage of the total FPGA resources. We also report
the resource utilization by the different Operator Units we
used. Note that the Regex and Skyline are significantly more
expensive than the other operators. On the current experimental
platform the QPI endpoint is implemented on the FPGA and
uses almost 30% of the logic resources.

VII. RELATED WORK

A. FPGA Programming Frameworks

Several research efforts have tried to bridge the gap be-
tween CPU and FPGA by extending conventional OS con-
cepts of multi-threading and virtualization to FPGA acceler-
ators [15], [1], [2], [24], [10], [4], [3]. ReconOS [15] and
HThreads [1] extend the multi-threading programming model

TABLE 1II: Resource Utilization

Module ALMs M20k

FThreads Manager (total) 23,252 9.9% 315 12.3%
Job Manager 3,695 1.6% 10 0.4%
Memory Management 3,525 1.5% 113 4.4%
FThread Interface 4,011 1.7% 48 1.9%
Regex operator 25,662 109% | 297 11.6%
Skyline operator 33,358 142% | 209 8.2%
Muladd operator 830 0.4% 0 0%
Percentage operator 1,296 0.6% 0 0%
Testcount operator 600 0.3% 0 0%
QPI Endpoint 67,288  28.7% 110 4.3%
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to express and manage FPGA accelerators as hardware threads
by providing an interface to create hardware threads and
synchronize them using hardware mutexes and semaphores.
In ReconOS hardware threads are coupled with a delegate
software thread which facilitates OS services for the hardware
thread. Similarly, FUSE [10] extends posix threads to encap-
sulate hardware accelerators, but without the need for software
delegate threads. In our work, the FThread abstraction follows
the same line of imitating software threads. However, a fully
fledged multi-threading framework with hardware mutexes is
not necessary as operators in the query plan execute sequen-
tially. Synchronization is only required to pipeline operators
through on-chip FIFOs or FQueues.

Chen et al. [4] propose a framework for virtualizing FPGA
resources in the cloud. They implement a job queue and
a job manager to facilitate sharing FPGA resources among
multiple users. A single job queue is sufficient when users
share the FPGA logic resources not configured functionalities.
In Centaur, multiple clients share the same operators, having
one job queue per operator type prevents different operators
from blocking each other. Dessouky et. al and Asiatici et. al [3]
considered the idea of uses on chip page table to assist memory
virtualization, in the same way we do.

There has also been recent work in supporting distributed
data processing on platforms such as MapReduce and Hadoop.
For instance, Wang et al. [26] show how to run MapReduce on
a platform developed using OpenCL. Huang et al. [8] describe
a system, Blaze, that integrates FPGAs as accelerators into
Hadoop YARN as a service (FaaS). These type of frameworks
are similar to Centaur only at a high level due to the different
kind of data processing being addressed. For instance, in Blaze,
a single accelerator is deployed on the FPGA and tasks are
scheduled one at a time. Sharing the FPGA between different
threads occur by scheduling them on a first come first serve
basis executing them one after the other. On the other hand,
Centaur targets throughput oriented OLAP/OLTP workloads,
and has been built to accommodate concurrent operators such
that multiple threads can share the FPGA resources simulta-
neously. Similarly, the tasks scheduler (Centaurs job manager)
resides on the FPGA instead of software to minimize Centaur’s
overhead on critical CPU cycles used by the database engine.
And, of course, Centaur targets database processing on a single
machine while both [26] and [8] have considerable additional
functionality for distributed data processing.

B. Database Accelerators

Many researchers have studied the use of FPGAs to ac-
celerate data processing in database systems [16], [17], [19],
[28], [30], [21]. Recent work from Samsung researchers [6],
[11] highlights the benefits of near-storage computation in ac-
celerating database analytical workloads. By integrating ARM
processors into an SSD, data filtering can be implemented
at the storage to reduce the amount of data that has to be
transferred to CPU. IBM Netezza [9] and BlueDBM [12]
are data processing appliances for complex analytical work-
loads. Both platforms deploy a pipeline of projection and
filtering operators on the data path between storage/network
and CPU to filter irrelevant data records early on and thereby
boosting database performance. Woods et al. [28] propose an
intelligent storage layer implemented with an FPGA attached



to a SSD. Supported queries include selection, projection,
and aggregation. Masato et al. [30] present an architecture
of interconnected FPGA-boards equipped with flash storage
and offload UDFs commonly used in OLAP workloads to the
FPGA. Sukhwani et al. [21] suggest an FPGA architecture as
a pipeline of decompression and predicate evaluation operators
connected to main memory through PCle to accelerate OLAP
workloads.

These research efforts show how database operators can
be organized in a pipeline to process a stream of data.
However, none of them explicitly discusses or explains how an
FPGA operator is represented in the software of the database
engine, and how the database engine interacts with and invokes
the operators on the FPGA. In this paper we focus on the
integration of an FPGA accelerator in a database engine by
expressing it as hardware thread and having a flexible FPGA
architecture that allows for concurrent and hybrid execution of
database operators.

In addition to using FPGAs for data acceleration, re-
searchers have been exploring different accelerator types such
as GPUs. He et al. [7] present GDB, a database built on top of a
CPU-GPU platform. Their work focuses in particular on query
plan optimizations, as well as partitioning of the operators and
data between CPU and GPU cores. They extended the query
optimizer with cost models for GPU operators. In a recent
work [25], the authors applied their approach to build a cost
model for FPGA operators. Based on this model the query
optimizer can evaluate a wide variety of operator combinations
and optimizations. This work nicely complements our own
in showing how a query optimizer can take advantage of an
accelerator.

VIII. CONCLUSIONS

In this paper we have presented Centaur, a framework
for accelerating database operators on hybrid CPU-FPGA
machines. The main purpose of the paper is to explore the
architectural aspects of the system. Using the UDF interface
together with the FThread abstraction allows for seamless in-
tegration of FPGA operators in the database engine. Allowing
the hardware operators to run independently and processing
job requests concurrently in the FThreads Manager enables
database clients to execute hardware operators concurrently.
Further, the ability to run hybrid queries and combine operators
in different ways provides plenty of options for the optimizer to
find an optimal query plan, but also allows for a wide range of
queries to benefit from FPGA acceleration. Supporting partial
reconfiguration would be a next step to accelerate a wider pool
of queries and provide higher throughput. We make Centaur
available as open source to enable both database and hardware
developers to conduct further research on integrating FPGAs
in database systems>.
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