
Low-Latency TCP/IP Stack
for Data Center Applications

David Sidler Zsolt István Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zürich

{firstname.lastname}@inf.ethz.ch

Abstract—TCP/IP is widely used both in the Internet as well as
in data centers. The protocol makes very few assumptions about
the underlying network and provides useful guarantees such as
reliable transmission, in-order delivery, or control flow. The price
for this functionality is complexity, latency, and computational
overhead, which is especially pronounced in software implemen-
tations. While for Internet communication this is acceptable, the
overhead is too high in data centers. In this paper, we explore
how to optimize a TCP/IP stack running on an FPGA for data
center applications with an emphasis on data processing (e.g.,
key value stores). Using a key-value store and a low-latency
consensus protocol implemented on an FPGA as an example
of the requirements that arise in data centers, we provide an
extensive analysis of the overheads of TCP/IP and the solutions
that can be adopted to minimize such an overhead. The proposed
optimized TCP/IP stack minimizes tail latencies (a key metric in
distributed data processing) and is efficiently implemented so as
to be able to share the FPGA with application logic.

I. INTRODUCTION

TCP/IP provides reliable transmission, in-order delivery,
and control flow over unreliable networks. This functionality
makes the protocol specification and implementation very
complex. Software based network stack implementations in-
troduce a significant latency overhead and also consume a non
negligible part of the available compute resources for which
they might compete with the application. One way to over-
come those issues is the use of network cards which provide
partial or full TCP offload to reduce the load on the host
machine. For applications on reconfigurable hardware there are
several commercial [1], [2], [3], [4] TCP/IP implementations
available. Most of them targeting ultra low-latency applications
such as high-frequency trading. As a result those stacks only
support a limited number of concurrent connections, typically
between 64-128. In the academic field, [5] presented a TCP/IP
stack with limited throughput (350 Mbps) and connection
(32) support. [6], [7] presented a hybrid hardware-software
implementation of a TCP/IP stack using an FPGA with
an embedded PowerPC CPU. A network stack targeted for
embedded devices by [8] focuses on low resource usage by
limiting the feature set. The TCP/IP stack in [9], is able to
consume data at 4 Gbps and generate it at 40 Gbps, targeting
asymmetric workloads like video on demand.

In earlier work [10] we presented a TCP/IP stack supporting
thousands of concurrent connections at 10 Gbps line-rate. The
goal was to enable data center applications serving thousands
of clients concurrently. This original implementation followed
the TCP specification as close as possible. In this paper

we present an optimized version of this TCP/IP stack for
data center applications. The optimized network stack targets
two types of applications. The first one is a client facing
application, such as a key-value store [11], [12]. The second
one is an FPGA-based distributed system, for instance a con-
sensus protocol [13], which uses peer-to-peer communication
between the FPGA boards.

When integrating these types of applications with the net-
work stack, two challenges have to be addressed. First, the
memory bandwidth available on an FPGA board, in our case
a Xilinx VC709, has to be shared among the application
and the TCP/IP stack. The original version of the stack uses
DDR memory to buffer the payload of incoming and outgoing
packets. When adding an application which also requires
access to the DDR memory, the memory bandwidth can easily
become a bottleneck. Second, although the existing hardware
implementation has a path latency of 1-5µs depending on
packet size, data center applications are very sensitive to
latencies. Generally in data center applications, the service
provider and the client have a service level agreement which
clearly defines median and, especially, tail latencies.

An additional issue we observed when using the TCP/IP
stack for inter FPGA communication was that, despite having a
low latency implementation in hardware, latency is introduced
by the TCP protocol in form of Delayed Acknowledgments,
conservative timers, and Nagle’s algorithm.

Data center networks are very controlled environments
and provide much more guarantees than the Internet. Recent
work [14], [15] has shown that data center networks exhibit
infrequent reordering of messages, have a fixed length network
topology, and provide high reliability. In such a network,
some functionality of the TCP protocol which is based on
conservative assumptions about the underlying network can
easily be relaxed without giving up any guarantees of TCP. By
relaxing or disabling certain features latency and throughput
of data center applications can be significantly improved.

In this paper we present the design of an optimized TCP/IP
stack that:

• Reduces the latency of the given stack further to facilitate
latency sensitive data center applications.

• Uses application and network knowledge to optimize TCP
protocol mechanisms without losing any functionality.

• Reduces the required memory bandwidth to DDR,
thereby freeing up resources and memory for the appli-
cation using the network stack.



State Tables

Timers

Event Engine

RX
Engine

TX
Engine

RX
Buffer

TX
Buffer

Application Interface

Fig. 1. Block diagram of the original TCP module

II. BACKGROUND

A. Network Stack

The network stack presented in this work is based on earlier
work[10] focused on maintaining 10 Gbps line-rate throughput
while supporting thousands of concurrent connections. The im-
plementation adhered to the TCP protocol specification and did
not make any assumptions about the network or application. In
contrast, the network stack presented in this paper is optimized
for data center applications. The focus of this implementation
is on reducing latency and minimizing access to DDR memory
by tailoring the stack to data processing applications in a data
center environment. In this section a short overview of the
original architecture is given, followed by the optimizations
for data center applications in the next section.

Fig. 1 shows how the TCP/IP stack is divided into three
parts, the two data paths, RX and TX path, and the state-
keeping data structures in the center. The two data paths are
heavily pipelined and can process data at line-rate. Each path
has its own payload buffer. To simplify memory management,
a fixed size 64 KB buffer is allocated for each connection.
In the case of supporting 10,000 concurrent connections this
adds up to 1.3 GB of required memory. Since this amount
does not fit into the on-chip BRAM, the RX and TX buffers
are allocated in DDR memory. In the center of the architecture
are multiple data structures. The State Tables keep track of the
TCP connection state and windows. The timers are necessary
for retransmission, probing, and connection time-outs. The
Event Engine aggregates events from different sources, RX
Engine, Timers, and Application, and forwards them to the
TX Engine. The TX Engine produces packets based on those
events and sends them to the network.

A key characteristic of this architecture is the clear sep-
aration between the two data paths and the data structures
which keep the state of each TCP connection. This allows
the data paths to operate and access the data structures
independently without interfering with each other. As a result,
full-duplex line-rate throughput is achievable. A drawback of
this architecture is the amount of DDR memory and memory
bandwidth required, since these two resources are scarce on
most FPGA boards. Because on each path the packet is read
and written to/from DDR, the required memory bandwidth
with full duplex at 10 Gbps is roughly 40 Gbps. As we show
in section IV, a single DDR module on the Xilinx VC709
board cannot provide the required memory bandwidth.

Network FPGA 1

FPGA 0

. . .

FPGA n

(4)
(2)

(3)

(3)
(4)
(2)

Client
0

· · ·

Client
N

(1)

(5)

Fig. 2. Application scenario: (1) the client sends a request to the application,
(2) an FPGA in the back-end receives the client request, (3) request processing
might lead to inter FPGA communication, (4) the FPGA sends a response back
to the client, (5) the client receives the response.

B. Application Setup

Fig.2 shows an example deployment of multiple FPGAs in
the data center. The FPGAs are connected over the network to
each other and to the clients. Apart from standalone applica-
tions like the key-value store, such a deployment also enables
FPGA-based distributed systems as presented by [16], [13]. As
illustrated in Fig.2, multiple clients can send requests to the
back-end where each request, depending on the application,
can lead to data exchange between the FPGAs. To keep the
total latency in the back-end low, the latency between the
FPGAs is crucial.

III. TAILORING THE NETWORK STACK

Using knowledge about the application and the network
infrastructure allows us to make certain assumptions. For
the application we can make three assumptions. First, client
requests fit inside a maximum transfer unit (MTU). An MTU
equals to the 1500 B size limit of Ethernet frames, respectively
9000 B for jumbo frames. Second, clients are synchronous
which means they do not have more than one outstanding
request. Third, the application also implemented on the FPGA
is designed to process data at line-rate. These assumptions
might not hold for inter FPGA communication where multiple
outstanding requests and large chunks of data spreading over
multiple Ethernet frames can be exchanged. For the data center
network, we assume high reliability and infrequent reordering
of messages, as shown by [14], [15].

A. Nagle’s algorithm

The goal of Nagle’s algorithm [17] is to optimize the
network bandwidth utilization. The TCP/IP headers are at
least 40 B in size and introduce some overhead in terms of
bandwidth, since they are transmitted with each TCP segment.
To reduce the overhead, Nagle’s algorithm tries to maximize
the amount of payload transmitted with each segment. The
algorithm works as follows: if the payload to be transmitted
is smaller than an MTU, it holds the data for a short amount
of time in the hope that more payload will be transmitted on
the same connection immediately. Except for the case that no
unacknowledged data is in flight. Then data is transmitted im-
mediately independent of its size. It is commonly known [18]
that, depending on the application, Nagle’s algorithm can



interact badly with the mechanism of Delayed Acknowledg-
ments. Therefore Nagle’s algorithm can be disabled in most
software stacks through the TCP NODELAY flag [19], [20].
For client communication, based on our assumptions, Nagle’s
algorithm is not triggered. For inter FPGA communication,
it is beneficial to disable the algorithm to reduce latency and
avoid negative interaction with Delayed Acknowledgments. As
a result, in our optimized stack we removed Nagle’s algorithm
completely, thereby also saving hardware resources.

B. Delayed Acknowledgment

Similar to Nagle’s algorithm, the Delayed Acknowledgment
described in RFC1122 [21] is a mechanism to increase the
network bandwidth utilization. In TCP, data packets get ac-
knowledged with an ACK packet, a simple control packet
which contains no payload. However, ACKs share the available
bandwidth with packets containing data. Since any other
packet belonging to the same connection also carries the ACK
number, sending of an ACK can be avoided if the ACK can be
piggybacked with another packet. The mechanism of Delayed
Acknowledgments delays ACKs up to 0.5 seconds in the hope
the ACK number can be either sent with a data packet or
merged with a later generated ACK. In the context of inter
FPGA communication, we considered removing the Delayed
Acknowledgments logic completely. However, experiments
have shown a significant reduction in goodput, especially for
small packets which are common in a distributed application
where many control messages are exchanged. Instead of re-
moving the delay we reduced it to 64µs, expecting a reply
from the application to piggyback the ACK within 5µs.

C. Retransmission- & Probe-Timers

The original TCP specification has defined very conservative
time-out values for retransmission, probing, and connection
time-out. These values were defined for unreliable and slow
wide-area networks (e.g. the Internet). In contrast, data centers
deploy reliable high-speed links which lead to more pre-
dictable RTTs. To reduce the response time to failures, we
adapted the time-out values according to our infrastructure.

D. On-chip RX buffer

Based on our assumptions about the client requests and that
the application can process data at line-rate, the amount of
buffer space on the RX path can be reduced significantly.
As mentioned, inter FPGA communication can contain data
chunks larger than an MTU. The TCP/IP stack enforces the
ordering of the segments, but reassembly of the segments has
to be done by the application itself. The additional buffer space
in the application to accumulate these larger data chunks incurs
a minimal resource overhead which scales linearly with the
number of inter FPGA connections.

E. Reducing memory access to the TX buffer

Since for the optimized stack Nagle’s algorithm was re-
moved, there is no requirement to buffer on the TX path
to accumulate enough payload to fill a segment up to the

1 64 128 256 512 1024 1460

200

400

600

800

Payload size [B]cy
cl

es
@

15
6.

25
M

H
z

(6
.4

ns
) RX original RX optimized

TX original TX optimized

Fig. 3. Latency improvement on data paths

size of an MTU. The TX Buffers are solely required for
retransmission of data in case of a failure. As a consequence,
on transmission, payload can be directly forwarded to the TX
Engine after it is written into DDR memory. On retransmis-
sion, the payload only has to be read from the DDR memory,
no write is needed. As a result, to generate a data packet in
the TX Engine, DDR memory is either written or read which
bounds the required memory bandwidth to 10 Gbps, half the
bandwidth of the original version. In addition to reducing the
memory bandwidth, directly forwarding the payload to the TX
Engine also reduces the latency on the TX path.

IV. EVALUATION

The original and optimized network stack were deployed on
a Xilinx VC709 evaluation board. The board is equipped with
a Virtex 7 X690T, two DDR3 SODIMMs with 4 GB each, and
four 10 G network interfaces of which one was used. In the
experimental setup, the VC709 is connected to a 10 G Cisco
Nexus 5596UP switch. Connected to the same switch are 8
server machines, each equipped with dual Xeon E5-2630 v3,
256 GB of main memory, and an Intel 82599ES 10 G network
card. In our experiments, a basic echo server is implemented
and connected to the network stack on the FPGA. Each server
machine is running 100 clients to generate load.

A. Reduced latency on data paths

First we compare the latency of the original and optimized
network stack without load. The measurement was done on
the hardware itself. Fig. 3 shows the latency in clock cycles at
156.25 MHz (6.4 ns) with increasing packet size. The check-
sum computation on each path requires a store-and-forward of
the complete segment, therefore the latency increases linearly
with the segment size. The original implementation required
two store-and-forwards on the TX path, as can be seen in the
figure by the quicker growth of the TX latency in comparison
to the RX latency. In the optimized version we were able
to remove one of these store-and-forwards. Subtracting the
cycles for the store-and-forward from the RX and TX path
measurements of the optimized stack leads to a constant
processing overhead of 85 cycles on the RX path and 70 cycles
on the TX path. Overall, the gain is between 2x and 3x in terms
of latency.



64 256 512 1,024 1,460

2

4

6

8

10

Payload size [B]

G
oo

dp
ut

[G
b/

s]

orig. TCP - single mem.
orig. TCP - dual mem.
opt. TCP - single mem.
TCP max. Goodput

Fig. 4. Comparing goodput with varying payload size.

TABLE I
RESOURCE REQUIREMENTS ON VC709 FOR 10,000 CONNECTIONS

FF LUT BRAM Mem. alloc. Mem. bw.
TCP/IP org. 27,189 25,364 342 1,300 MB 40 Gbps
TCP/IP opt. 24,744 22,468 353 650 MB 10 Gbps
Diff to org. -9.0% -1.4% +3.2% -50% -75%

B. Improved throughput by avoiding DDR memory access

The experiment compares the original memory bandwidth
used and the required memory bandwidth in the optimized
stack. We compare three different setups, the original version
where the RX and TX buffer share a single memory controller,
the original version where the RX and TX buffer each have
their own memory controller, and the optimized version where
only the TX buffer is in DDR memory. The optimized version
further reduces memory bandwidth by either only writing the
data to the buffer in case of transmission or only reading
it from the buffer in case of retransmission. Fig. 4 shows
how the original TCP stack is clearly memory bound when
attached to a single memory controller. The original stack
using two memory controllers, one for each data path, and
the optimized version, which only stores the TX buffers in
DDR, achieve the same throughput. Both implementations are
network bound for payload sizes of 256 B and larger, as can
be seen by the dashed line which represents the theoretical
maximum goodput. For smaller payloads the throughput is
bound by the load generating server machines.

C. Resources

TABLE I compares the resource usage between the original
version of the network stack and the optimized version. In the
table we do not list the resource consumption of the network
and memory interfaces, since they both remain in the design.
We expect that the freed up memory controller will be used by
the application. Logic consumption in the optimized version
is slightly lower due to removal of the RX buffer interface.
On the other hand more BRAMs are required, since the RX
buffer was moved from DDR into BRAM. This also cuts the
fix allocated memory in the DDR in half. Since in the original
stack every packet was read and written to the DDR memory

on the RX and TX path, this potentially required up to 40 Gbps
of memory bandwidth. Due to the removal of DDR on the
RX path and optimizations on TX path, data is either written
or read from DDR, the required memory bandwidth cannot
exceed 10 Gbps.

V. CONCLUSION

In this work we have presented a low-latency TCP/IP stack
for data center applications. We were able to reduce the
latency by making some assumptions about the application and
the underlying network. The main assumption is that client
requests always fit into a single Ethernet frame. Based on
this the buffering of payload on the RX and TX path was
heavily optimized to reduce latencies on the paths, but also
reducing memory access. Due to limited memory bandwidth
on most FPGA boards the latter is a requirement to deploy
complex applications on the same chip as the TCP/IP stack.
The improvements introduced in this paper showed a reduced
latency of 2-3x on each data path.

ACKNOWLEDGMENT

This research is funded in part through an equipment grant
from Xilinx, Inc.

REFERENCES

[1] https://www.plda.com/products/fpga-ip/xilinx/fpga-ip-tcpip/
quicktcp-xilinx/.

[2] U. Langenbach, A. Berthe et al., “A 10 GbE TCP/IP hardware stack as
part of a protocol acceleration platform,” in ICCE-Berlin’13.

[3] http://www.intilop.com/tcpipengines.php/.
[4] http://www.dinigroup.com/new/TOE.php/.
[5] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C. Kachris, “An open TCP/IP

core for reconfigurable logic,” in FCCM’05.
[6] Z.-Z. Wu and H.-C. Chen, “Design and implementation of TCP/IP

offload engine system over Gigabit Ethernet,” in ICCCN’06.
[7] S.-M. Chung, C.-Y. Li, and other, “Design and implementation of the

high speed TCP/IP offload engine,” in ISCIT ’07.
[8] T. Uchida, “Hardware-based TCP processor for Gigabit Ethernet,”

Nuclear Science, IEEE Transactions on, vol. 55, no. 3, June 2008.
[9] Y. Ji and Q.-S. Hu, “40Gbps multi-connection TCP/IP offload engine,”

in WCSP’11.
[10] D. Sidler, G. Alonso, M. Blott, K. Karras et al., “Scalable 10Gbps

TCP/IP Stack Architecture for Reconfigurable Hardware,” in FCCM’15.
[11] Z. Istvan, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table

design for 10Gbps key-value stores on FPGAS,” in FPL’13.
[12] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,

and M. Margala, “An FPGA memcached appliance,” in FPGA’13.
[13] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a box:

Inexpensive coordination in hardware,” in NSDI’16.
[14] D. R. K. Ports, J. Li, V. Liu, and other, “Designing distributed systems

using approximate synchrony in data center networks,” in NSDI’15.
[15] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos:

Consensus at network speed,” in SOSR’15.
[16] A. Putnam, A. Caulfield, E. Chung et al., “A reconfigurable fabric for

accelerating large-scale datacenter services,” in ISCA’14.
[17] N. J., “Congestion control in IP/TCP internetworks,” Internet

Engineering Task Force, RFC 896, January 1984. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc896.txt

[18] S. Cheshire, “TCP performance problems caused by interaction between
Nagles algorithm and Delayed ACK,” http://www.stuartcheshire.org/
papers/NagleDelayedAck, 2005.

[19] “tcp(7): TCP protocol – linux man page,” http://linux.die.net/man/7/tcp.
[20] “setsockopt function (Windows),” https://msdn.microsoft.com/en-us/

library/windows/desktop/ms740476%28v=vs.85%29.aspx.
[21] B. E., “Requirements for internet hosts - communication layers,”

Internet Engineering Task Force, RFC 1122, January 1989. [Online].
Available: http://www.rfc-editor.org/rfc/rfc1122.txt


