
doppioDB: A Hardware Accelerated Database

David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara, and Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zürich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Relational databases provide a wealth of functionality to a
wide range of applications. Yet, there are tasks for which
they are less than optimal, for instance when processing be-
comes more complex (e.g., matching regular expressions) or
the data is less structured (e.g., text or long strings). In
this demonstration we show the benefit of using specialized
hardware for such tasks and highlight the importance of a
flexible, reusable mechanism for extending database engines
with hardware-based operators.

We present doppioDB which consists of MonetDB, a main-
memory column store, extended with Hardware User De-
fined Functions (HUDFs). In our demonstration the HUDFs
are used to provide seamless acceleration of two string oper-
ators, LIKE and REGEXP_LIKE, and two analytics operators,
SKYLINE and SGD (stochastic gradient descent).

We evaluate doppioDB on an emerging hybrid multicore
architecture, the Intel Xeon+FPGA platform, where the
CPU and FPGA have cache-coherent access to the same
memory, such that the hardware operators can directly ac-
cess the database tables. For integration we rely on HUDFs
as a unit of scheduling and management on the FPGA. In
the demonstration we show the acceleration benefits of hard-
ware operators, as well as their flexibility in accommodating
changing workloads.

1. INTRODUCTION AND MOTIVATION
Relational engines exhibit great performance for a wide

range of tasks. There are, however, well known operations
and data types that cause problems. One of these data types
is character strings which are both unstructured and expen-
sive to process for anything but the simplest forms of pattern
matching.

Most databases implement the SQL LIKE operator which
can match multiple substrings divided by a wildcard ’%’.
For more complex string matching, some engines provide
a vendor-specific regular expression operator, such as REG-

EXP_LIKE. In contrast to string matching with the LIKE op-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058746

erator, regular expression evaluation is significantly more
compute-intensive, easily resulting in a performance differ-
ence of an order of magnitude between the two operators.

With the increasing amount of user-generated data stored
in relational databases, there is a growing need to analyze
unstructured text data. At the same time, analytical oper-
ations in the context of machine learning become gradually
more important to extract useful information from the vast
amount of data collected. Many analytical operators incur a
significant compute complexity not suitable to database en-
gines where multiple queries share the available resources.

One way to address this trend is to use accelerators such as
Xeon-Phi, GPUs, or FPGAs. Such approaches often promise
orders of magnitude performance improvements, however in
many cases the integration into a real system cancels these
improvements because 1) the data needs to be adjusted to
the execution model of the accelerator (e.g., GPUs, SIMD on
Xeon Phi) and 2) the data needs to be partitioned between
the host and accelerator memory. Indeed, the integration
into the database and addressing challenges related to data
consistency and management are still open problems.

Hybrid multicore architectures, such as IBM’s CAPI for
Power8 [5] and Intel’s Xeon+FPGA platform [2], try to ad-
dress these limitations. In these architectures, the accel-
erator is treated as another processor in the system and
has direct access to shared memory. This architecture has
the potential of removing both the data-reformatting and
-partition overhead. In our work, we take advantage of this
tight coupling and implement Hardware User Defined Func-
tions (HUDFs) which can access data in the database with-
out explicitly moving data to and from the accelerator. By
implementing the UDF interface, the HUDF becomes just
another operator from the point of the database engine and
hides all the complexity of interacting with the hardware
accelerator.

In this work we demonstrate the integration of the follow-
ing three FPGA-based hardware operators into MonetDB,
as explained in [4]: regular expression [4], skyline [6], and
stochastic gradient descent [1]. The hardware operators are
fully runtime parameterizable, i.e., the chip does not need
to be reprogrammed for executing new queries using the
same operator. Thanks to their integration into MonetDB as
HUDFs, they can be used seamlessly in queries. As we will
demonstrate, our FPGA-based operators achieve at least 2-
3x speed up over software running on a 10-core CPU, reach-
ing more than an order of magnitude improvement in many
cases.

MonetDB

HUDF Regex
Eng 1

Regex
Eng 2

Skyline
Eng 1

SGD
Eng 1

AAL AAL

Job
Dist.

HAL HAL
User
Query

MonetDB
BATs

Result
BATs

Job
Queues

Parameters

Status

1

2
3

3 5 4 4

6

6

7

8

9
CPU

Shared Memory

FPGA

Figure 1: Overview of the system, the numbers show the
steps of executing a regular expression query on the FPGA

2. SYSTEM OVERVIEW
The system used in the demonstration is described in [4].

It has three main components (Figure 1): 1) MonetDB ex-
tended with our Hardware User Defined Functions (HUDFs),
2) the Hardware Operator Abstraction Layer (HAL) provid-
ing a simple software API to execute jobs on the FPGA and
3) four hardware engines implementing one of the regular
expression, skyline, or stochastic gradient descent operators.
Each hardware engine is runtime parameterizable such that
it can adapt to the current query.

2.1 MonetDB
We integrate hardware operators into MonetDB using its

native UDF interface. Unlike most databases which re-
quire the invocation of the UDF for each tuple, in MonetDB
UDFs can operate on complete columns, called binary as-
sociation tables (BATs). To guarantee that the operators
on the FPGA can access the data in MonetDB, we altered
MonetDB’s memory allocation to use a custom memory al-
locator which manages the CPU-FPGA shared memory. In
the current prototype system this region is limited to 4 GB,
but this is not a fundamental limitation and will be lifted in
future generations of the Xeon+FPGA system.

2.2 Hardware Operator Abstraction Layer
The HAL provides two main functionalities an API to con-

struct and monitor jobs on the FPGA and the custom mem-
ory allocator for the CPU-FPGA shared memory region.
After the initial handshake between software and hardware
which is executed through Intel’s AAL (Accelerator Abstrac-
tion Layer) library, all control communication is handled
by the HAL. The HAL allocates all control data structures
such as the job queue, job parameters, and job status in the
shared memory region, thereby they are accessible from soft-
ware and hardware. Similarly all the BATs, data columns,
and intermediate results of MonetDB and the result BATs
produced by the FPGA are allocated in this region.

For each operator type a job queue is allocated in shared
memory. When the HUDF in MonetDB creates a job through
the HAL, a job is enqueued in the corresponding job queue.
On the FPGA the Job Distributor is constantly monitoring

these queues and assigns new jobs to available engines of the
requested operator type. The HAL module on the FPGA
also arbitrates the memory access from the four engines to
guarantee fair sharing of the available bandwidth.

2.3 Execution Walkthrough
We want to illustrate through an execution walkthrough

the functionality of our system and the interaction of the
three main components: MonetDB, HAL, and Hardware
Engines. The walkthrough explains the execution of a reg-
ular expression query, but the same steps apply to other
hardware operators. The following steps are required when
processing a user query, while the corresponding numbers in
Figure 1 show where in the system they take place:

1. A query containing a regular expression is submitted.

2. As part of executing the query, MonetDB calls the
HUDF. The regular expression string and the input
BAT are provided as parameters.

3. The HUDF allocates memory for the result BAT, and
calls the HAL to create a new FPGA job.

4. The HAL allocates memory for the job parameters and
job status data structures and populates them.

5. The HAL enqueues a job into the corresponding shared
memory job queue.

6. The Job Distributor logic inside the HAL on the FPGA
fetches the job from the job queue and assigns it to an
idle Regex Engine (Engine 1 in this example).

7. The Regex Engine reads the parameters from shared
memory and configures itself with the configuration
vector. It then starts the execution and processes the
input BAT.

8. After the engine terminates, it sets the done bit in its
status memory and updates various statistics about
the execution.

9. The UDF waits on the done bit and then hands the
result BAT over to MonetDB.

Thanks to the standard UDF interface, HAL abstraction,
and parameterizable hardware operators on the FPGA, a
wide range of queries can be offloaded without reprogram-
ming the FPGA.

2.4 Regular Expression Engines
Each regular expression engine is capable of processing

strings at 6.4 GB/s, with up to four engines leading to an
aggregated bandwidth of 25.6 GB/s. However on the current
platform the throughput is limited by the QPI link to around
6.5 GB/s, therefore deploying more than one shows only a
slight improvement and deploying more than two shows no
further improvement. The regular expression engines are
parametrized through a 512 bit configuration vector which is
loaded by the Regex Engine before execution of each query.
This configuration vector is generated on the software side
in the HUDF, more details can be found in [4]. As a result
the FPGA does not have to be reprogrammed to support
multiple different queries.

2.5 Analytics Engines
The two analytics operators used for the demonstration

are SKYLINE and SGD (stochastic gradient descent).
We integrated the skyline implementation by Woods et

al. [6] into MonetDB as a HUDF. The skyline operator works
on multiple columns and finds a list of records which are not

worse than any other (i.e. they are part of the pareto optimal
set). A common example, is a query over hotels which have
price and distance to the beach attributes. In this case, the
skyline operator would return all hotels which are not worse
than any other hotel for these two attributes. Skyline is
an iterative, compute-bound operation with a variable run-
time, similar to many machine learning algorithms. In our
implementation the skyline operator can be parametrized at
runtime to operate on up to 16 different attributes.

SGD is a very commonly used algorithm for training lin-
ear machine learning models. It is based on vector algebra,
thus the inherent parallelism and deep-pipelined computa-
tion provided by an FPGA provides speedup over the state-
of-the-art CPU implementations. We integrated an SGD op-
erator into MonetDB as a HUDF, so that linear model train-
ing can be performed on newly imported or already existing
data in relational tables. Through the HUDF interface, up
to 16 features can be passed to the SGD operator. The oper-
ator is highly parameterizable (e.g., the convergence rate of
the optimization, the frequency of model updates), such that
the training can be tuned to the target data set to achieve
an optimal convergence of the optimization problem [1].

3. DEMONSTRATION

3.1 Setup
For our demonstration we use version 1 of the experimen-

tal Xeon+FPGA system released under the Intel-Altera Het-
erogeneous Architecture Research Platform1 program [2].

The system has two sockets and each socket is its own
NUMA region. One of them contains a 10-core CPU (Intel
Xeon E5-2680 v2) and the other an FPGA (Altera Stratix
V 5SGXEA). In this experimental system it is only possi-
ble to install memory in the CPU’s NUMA region which
is equipped with 96 GB of main memory. The FPGA has
cache-coherent access to the memory through the QPI bus.
This memory access is clearly bound by the available QPI
bandwidth which we measured to be around 6.5 GB/s for
read-intensive workloads. The reason for this low bandwidth
is partially due to the prototype QPI endpoint which is im-
plemented in FPGA logic and only runs at a frequency of
200 MHz. The QPI endpoint is part of the prototype sys-
tem and cannot be modified. Based on announcements from
Intel [3], we expect the memory bandwidth to increase sig-
nificantly in the next generation of the platform.

The system runs Ubuntu 14.04 and a modified version of
MonetDB (11.21.19) that includes all adaptations required
to integrate the HUDFs.

3.2 Scope and Presentation
During the demonstration, the user can interact through

a web interface with the database. The interface consists
four tabs, one for each operator and a fourth where the
operators can be combined in a workload experiment. The
operator specific tabs allow to submit single queries, while in
the workload tab multiple clients can be deployed to observe
the effect of hardware acceleration on the system.

1Results in this publication were generated using pre-
production hardware and software donated to us by Intel,
and may not reflect the performance of production or future
systems.

Figure 2: Single Query dashboard

Figure 3: Workload acceleration dashboard, hardware accel-
eration was enabled between timestamp 40 s and 120 s

A) Single Query
Each operator has its own interface to run queries, the one
for the regular expression operator is shown in Figure 2. The
visitor of the demonstration will be able to choose among a
varying number of queries and database tables which vary
in regards to parameters such as pattern complexity, size of
the table, selectivity, or number of dimensions. The queries
can be executed either with hardware acceleration enabled
or software-only. The visitor will see the different type of
queries our system can handle and observe the effect of hard-
ware acceleration through the reported response time. Ad-
ditionally the results of the query are visualized in the UI to
the visitor.

In the case of the regex operator we will illustrate that
the operator can be used even if the patterns in the selec-
tion is too large to fit on the deployed regular expression
circuit on the FPGA. To still benefit from hardware accel-
eration it can be executed in a hybrid mode where it is
partially evaluated on the FPGA and partially in software.
As the demonstration will illustrate, even a partial evalua-
tion on the FPGA gives a significant performance boost over
software-only evaluation.

B) Workload Acceleration
The interface used for this part of the demonstration can be
seen in Figure 3. The user can deploy four different type
of clients. The first three types correspond to the available
hardware operators. The fourth type executes simple queries
to generate load on the system. The user can choose a differ-
ent amount of clients from each type to create a workload.
Since all three operators are already deployed, the FPGA
does not have to be reprogrammed independent of the work-
load chosen. When the demonstration is running, the web
interface will fetch in intervals of 5 seconds the aggregated
throughput of the clients as well as the current CPU uti-
lization. To see the impact of hardware acceleration, the
visitor can enable and disable it while the clients are ex-
ecuting the queries. The impact can then be observed in
real-time through the changes observed in the graphs.

4. INSIGHTS FOR THE DEMO VISITORS
The demonstration will convey the insights we gathered

related to the benefits and drawbacks of using UDFs to in-
terface with the accelerator. The abstraction of Hardware
User Defined Functions (HUDFs) provides a seamless inte-
gration of hardware operators and hides the complexity of
offloading to an accelerator from the database engine. This
makes it possible to use the accelerator in many scenarios,
and even compose its results easily with software operators
(i.e. in the case of hybrid execution of regular expressions).

However the UDF interface also imposes some limitations,
for instance depending on the database only one tuple at a
time can be passed to the UDF, or the number of tables or
columns a UDF can operate on is usually limited. An other
important drawback, especially since we use UDFs to hide
an accelerator, is that from the point of the database engine
the UDF acts like a black box. Thereby making any predic-
tions about its execution cost or runtime nearly impossible.

However, information regarding the accelerator such as
capacity, current load, and a performance model are all
available and could be made available to the database en-
gine. By exposing the accelerator as a more transparent unit
the query optimizer would be able to build a cost model.
Thereby the optimizer can also decide if calling the accel-
erator indeed accelerates the execution. If, for instance, an
accelerator is fully utilized but CPU utilization is low, it

might be beneficial to execute the operator in software in-
stead of offloading it. To achieve a better integration with
the query engine, the HUDF interface has to be extended
further and the execution model of the accelerator has to be
made available to the database engine. We plan to address
these challenges in future work.

As for the choice of platform, in our work we used an In-
tel Xeon+FPGA system, one of the first high-performance
shared-memory hybrid architectures. Given the announce-
ments of future Xeon+FPGA systems [3] or the development
of cache-coherent interfaces for accelerators such as Open-
CAPI and CCIX, we expect to see more hybrid systems and
an even tighter integration between accelerators and CPUs.
As we have shown in this work, databases can benefit signif-
icantly from hybrid shared memory architectures, especially
in regards to compute-intensive operations, and this benefit
will only increase with tighter integration.

Acknowledgments
We would like to thank Intel for their generous donation of
the HARP v1 prototype. Part of the work of Zsolt István
has been funded by Microsoft Research.

5. REFERENCES
[1] K. Kara, D. Alistarh, C. Zhang, O. Mutlu, and

G. Alonso. FPGA accelerated dense linear machine
learning: A precision-convergence trade-off. In
FCCM’17.

[2] N. Oliver, R. Sharma, S. Chang, et al. A reconfigurable
computing system based on a cache-coherent fabric. In
ReConFig’11.

[3] P.K. Gupta. Accelerating datacenter workloads.
http://www.fpl2016.org/slides/Gupta%20--%
20Accelerating%20Datacenter%20Workloads.pdf.

[4] D. Sidler, Z. István, M. Owaida, and G. Alonso.
Accelerating pattern matching queries in hybrid
CPU-FPGA architectures. In SIGMOD’17.

[5] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. CAPI:
A coherent accelerator processor interface. IBM J.
Research and Development, 59(1), Jan 2015.

[6] L. Woods, G. Alonso, and J. Teubner. Parallel
computation of skyline queries. In FCCM’13.

