

Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures

David Sidler, Zsolt István, Muhsen Owaida, Gustavo Alonso Systems Group, Department of Computer Science, ETH Zürich

New emerging hybrid architectures

Intel Xeon+FPGA (v1)

Hybrid CPU-FPGA Architectures:

Intel Xeon+FPGA (v2)

[2] L. Woods, J. Teubner, Complex event detection at wire speed with FPGAs, VLDB'10

Integration

[3] M. Owaida, D. Sidler, et al., *Centaur: A Framework for Hybrid CPU-FPGA Databases*, FCCM'17

Overhead

State Graph (fully connected)

S4

Minimal overhead which decreases proportionally for larger data sets

Throughput

Hybrid Execution

 Complex expressions might not fit into deployed NFA Divide regex evaluation between CPU and FPGA

systems.ethz.ch/fpga github.com/fpgasystems

Acknowledgements: We would like to thank Intel for their generous donation of the HARP v1 prototype. This work is funded in part through the Microsoft Joint Research Center MSR-ETHZ-EPFL.