Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures

New emerging hybrid architectures

Intel Xeon+FPGA (v1)	
Memory	Read-heavy: $6.5 \mathrm{~GB} / \mathrm{s}$
55	
Mem. Ctrl.	FPGA cache
Intel Xeon	User Logic
	Stratix V

Hybrid CPU-FPGA Architectures:

- FPGA has cache-coherent access to main memory
- Eliminate the issue of data movement/partitioning
- FPGA is a specialized core

Intel Xeon+FPGA (v2)

How to use your future FPGA for pattern matching

Characters triggering states

Regular Expression in Hardware:

- Regular expressions can be mapped to NFAs
- NFAs can be efficiently executed on FPGAs[1,2]
 Character Encoder

Regular Expression: (a|b). ${ }^{*} \mathrm{c}$

Character Encoder supports:

- Sequences •Case-insensitivity
- Ranges - Collations

Transitions parameterized by State Transitions matrix
[1] R. Sidhu, V. Prasanna, Fast regular expression matching using FPGAs, FCCM’01
[2] L. Woods, J. Teubner, Complex event detection at wire speed with FPGAs, VLDB'10

Integration

[3] M. Owaida, D. Sidler, et al., Centaur: A Framework for Hybrid CPU-FPGA Databases, FCCM'17

Overhead

Minimal overhead which decreases proportionally for larger data sets

Throughput

On a par with a 10-core CPU!

Hybrid Execution

- Complex expressions might not fit into deployed NFA
- Divide regex evaluation between CPU and FPGA

